Math 4181H

Homework 6

Due by Tuesday, October 14

Chapter 8, p. 140:

- **6.** Let $B \subseteq \mathbb{R}$ and let A be a dense subset of B.
- (b) Prove that if f and g are continuous on B and f(x) = g(x) for all $x \in A$, then f = g on B (that is, f(x) = g(x) for all $x \in B$).
- (c) Prove that if f and g are continuous on B and $f(x) \ge g(x)$ for all $x \in A$, then $f \ge g$ on B (that is, $f(x) \ge g(x)$ for all $x \in B$). Can " \ge " be replaced by ">"?

Chapter 6, pp. 120-121:

- 4. Give an example of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous nowhere, but |f| is continuous everywhere.
- 5. For each point $a \in \mathbb{R}$ find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is continuous at a but is discontinuous at all other points of \mathbb{R} .
- **6.** (b) Find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is discontinuous at $0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ but continuous at all other points.
- (a) Find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is discontinuous at $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ but continuous at all other points.

Chapter 7, pp. 130-132:

- 5pt 10. Suppose f and g are continuous on [a,b], f(a) < g(a), and f(b) > g(b). Prove that f(x) = g(x) for some $x \in [a,b]$.
- 8. Suppose that f and g are continuous on an interval I, that $f^2 = g^2$, and that $f(x) \neq 0$ for all x. Prove that either f = g or f = -g. (Hint: Consider the function h = g/f.)
- 16. (a) Suppose that f is continuous on (a,b) and $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x) = +\infty$. Prove that f has a minimum on all of (a,b). (*Hint:* Choose a **closed** subinterval of (a,b) such that f is "large" outside of it.)
- 18. Suppose f is a continuous function on \mathbb{R} with f(x) > 0 for all x, and $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$. Prove that f attains its maximal value in \mathbb{R} .

Chapter 8, Appendix, p. 146:

- _{5pt} **2.** (a) If f and g are uniformly continuous on A, then so is f + g.
- (b) If f and g are uniformly continuous and bounded on A, then fg is unformly continuous on A.
- $_{\mathrm{5pt}}$ (c) Show that the conclusion of (b) fails if one of $f,\,g$ is unbounded.
- (d) Suppose that f is uniformly continuous on A, g is uniformly continuous on B, and $f(A) \subseteq B$. Prove that $g \circ f$ is uniformly continuous on A.