Math 4181H

Homework 8

Due by Wednesday, November 12

A3. Using the definition (and not using the Fundamental Theorem of Calculus), prove that $\int_0^1 x^2 = 1/3$. (*Hint:* $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.)

Chapter 13, pp. 275-281:

4. Let $d \in \mathbb{N}$ and 0 < a < b, put $f(x) = x^d$. Find $\int_a^b f$ in the following way: Put c = b/a.

(a) For each $n \in \mathbb{N}$, put $t_i = ac^{i/n}$, i = 0, 1, ..., n, and let $P_n = \{t_0, ..., t_n\}$. Prove that $\operatorname{mesh}(P_n) \longrightarrow 0$ as $n \longrightarrow \infty$.

(b) Find $U(f, P_n)$. (That is, try to write $U(f, P_n)$ in a compact form that will help you in (c) below.)

_{5pt} (c) Conclude that $\int_a^b x^d dx = \frac{1}{d+1} (b^{d+1} - a^{d+1}).$

21. Let f be strictly increasing and continuous on [c, d], let a = f(c) and b = f(d).

(a) If $P = \{t_0, \dots, t_n\}$ is a partition of [a, b], let $P' = \{f^{-1}(t_0), \dots, f^{-1}(t_n)\}$. Prove that $L(f^{-1}, P) + U(f, P') = bd - ac$.

_{5pt} (b) Prove that $\int_a^b f^{-1}(y)dy = bd - ac - \int_c^d f(x) dx$.

 $_{5\mathrm{pt}}$ (c) Find $\int_{a}^{b} \sqrt[n]{x} \, dx$ for $0 \leq a < b$ (without using the F.T.C.)

31. Let f be integrable on [a, b].

_{5pt} (a) Give an example where $f \ge 0$, f(x) > 0 for some $x \in [a, b]$, but $\int_a^b f(x) dx = 0$.

(b) Suppose that $f \geq 0$, f is continuous at $x_0 \in [a,b]$ and $f(x_0) > 0$. Prove that $\int_a^b f(x) dx > 0$.

Chapter 14, pp. 296-302:

 ${\bf 1.}$ Find the derivatives of the following functions:

_{5pt} (i) $F(x) = \int_0^{x^3} \sin^3 t \, dt$. (*Hint: F* is the composition of an integral function and of x^3 .)

 $\int_{5pt}^{5pt} (ii) F(x) = \int_{3}^{\int_{1}^{x} \sin^{3} t dt} \frac{dt}{1 + \sin^{6} t + t^{2}}.$

9. Prove that if f is continuous on \mathbb{R} , then $\int_0^x f(u)(x-u) du = \int_0^x \left(\int_0^u f(t) dt\right) du$. (Hint: Differentiate $G(x) = \int_0^x f(u)(x-u) du$. Or integrate $\int_0^x f(u)(x-u) du$ by parts.)

21. Suppose that f' is integrable on [0,1] and f(0)=0. Prove that for all $x\in(0,1]$ we have $|f(x)|\leq\sqrt{\int_0^x|f'|^2dt}$.