Math 4181H

Homework 9

Due by Tuesday, November 25

A1. Let $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0. Prove that f is infinitely differentiable 10pt on \mathbb{R} with $f^{(n)}(0) = 0$ for all n. (Hint: Use induction. Prove that for any polynomial p, $\lim_{x\to 0} e^{-1/x^2} p(1/x) = 0$, for which goal pass to y = 1/x.)

Chapter 23, pp. 489-498:

- **2.** Prove that the series $\sum a^n n!/n^n$ converges for 0 < a < e and diverges for a > e. (Hint: 10pt Use the ratio test.)
- **5.** (a) Prove that if the series $\sum x_i$ converges absolutely, then so does $\sum x_i^3$. 5pt
- (b) Show that the series $\sum_{i=1}^{\infty} x_i = 1 \frac{1}{2} \frac{1}{2} + \frac{1}{\sqrt[3]{2}} \frac{1}{2\sqrt[3]{2}} \frac{1}{2\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} \frac{1}{2\sqrt[3]{3}} \frac{1}{2\sqrt[3]{3}} + \cdots$ 10pt converges, but $\sum x_i^3$ diverges.
- **A2.** (a) Let $f:[1,+\infty) \longrightarrow \mathbb{R}$ be a decreasing nonnegiative function. For every $i \in \mathbb{N}$, 10pt let $a_i = f(i)$. Prove that a finite limit $l = \lim_{n \to \infty} \left(\sum_{i=1}^n a_i - \int_1^n f \right)$ exists and satisfies $0 \le l \le a_1$. (*Hint:* Notice that for any i, $a_i \ge \int_i^{i+1} f \ge a_{i+1}$.) (b) Prove that a finite limit $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n\right)$ exists. (This $\gamma = 0.5772\dots$
- 5ptis called Euler-Mascheroni constant.)