Math 4181H

Midterm 2

In your solutions you may use any results proven in class, in homework, or in the lecture notes.

- 1. Find $\lim \sqrt[n]{100n^{100} + 2^n}$ (and justify your answer, of course).
- 2. Let (x_n) be a sequence satisfying $|x_n x_m| < 1/\min\{n, m\}$ for all n, m. Prove that this sequence converges.
- 3. If $\lim_{x\to 0^+} f(x) = \infty$, prove that $\lim_{x\to +\infty} \frac{1}{f(1/x)} = 0$. (Proofs like $\frac{1}{0^+} = +\infty$ are not accepted.)
- 4. Let $f: A \longrightarrow \mathbb{R}$ be a monotone function and let $a \in A$ be a limit point of both $A \cap (-\infty, a)$ and $A \cap (a, +\infty)$. Suppose there are sequences (x_n) and (y_n) in $A \setminus \{a\}$ such that (x_n) is increasing to $a, (y_n)$ is decreasing to a, and $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. Prove that f is continuous at a.
 - **5.** Let $f:[0,+\infty) \longrightarrow \mathbb{R}$ be a continuous function with the property that a finite $\lim_{x\to+\infty} f(x)$ exists.
- (a) Prove that f is bounded. (*Hint:* Choose M large enough and consider the intervals [0, M] and $[M, +\infty)$ separately.)
- $_{5\%}$ (b) Does f have to attain its maximal value?