Math 4181H

Final exam review problems

- 1. Let $\sum a_i$ be a converging series. Prove or disprove:
- (i) If $b_i \longrightarrow 0$, then the series $\sum a_i b_i$ converges.
- (ii) If $b_i \longrightarrow 0$ and $b_i \ge 0$ for all i, then $\sum a_i b_i$ converges.
- (iii) If $b_i \searrow 0$ (decreases and tends to 0), then $\sum a_i b_i$ converges.
- (iv) If $\sum a_i$ converges absolutely and $b_i \longrightarrow 0$, then $\sum a_i b_i$ converges.
- **2.** Suppose f is differentiable on an interval I. Prove that f' is a pointwise limit of a sequence of continuous functions.
- 3. Prove Dini's theorem: if (f_n) is a monotone sequence of continuous functions on a closed bounded interval I that converges pointwise to a continuous function f, then $f_n \Longrightarrow f$.
- **4.** Let [a,b] be a (closed bounded) interval and let (c_n) be a sequence diverging to $+\infty$.
- (a) Prove that $\int_a^b \sin(c_n x) dx \longrightarrow 0$ as $n \longrightarrow \infty$.
- (b) Prove the Riemann-Lebesgue's lemma: For any continuous function f on a closed bounded interval [a, b], $\int_a^b f(x) \sin(c_n x) dx \longrightarrow 0$ as $n \longrightarrow \infty$. (*Hint:* Approximate f by step functions.)
- **5.** Prove that the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges uniformly on \mathbb{R} .
- **6.** Find the set of x for which the series $\sum_{n=0}^{\infty} 2^n \sin^n x$ converges, and find the sum of this series on this set.
- 7. Prove that the zeta function $\zeta(x) = \sum_{n=1}^{\infty} n^{-x}, x > 1$, is infinitely differentiable on $(1, +\infty)$.
- 8. Prove that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is an even function, then $a_n = 0$ for all odd n, and if f is an odd function, then $a_n = 0$ for all even n.
- 9. Find each of the following sums.
- (i) $1 x + \frac{x^2}{2!} \frac{x^3}{3!} + \dots$ (ii) $1 x^3 + x^6 x^9 + \dots, |x| < 1.$
- (iii) $\frac{x^2}{2} \frac{x^3}{3\cdot 2} + \frac{x^4}{4\cdot 3} \frac{x^5}{5\cdot 4} + \dots, |x| < 1.$
- **10.** Evaluate the following sums:
- (i) $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} \pi^{2n}}{(2n)!}$.
- (ii) $\sum_{n=0}^{\infty} \frac{1}{(2n)!}.$
- (iii) $\sum_{n=0}^{\infty} \frac{1}{(2n+1)2^n}.$
- (iv) $\sum_{n=0}^{\infty} \frac{1}{3^n(n+1)}$.
- **11.** If $f(x) = (\sin x)/x$ and f(0) = 1, find $f^{(k)}(0)$, $k \in \mathbb{N}$.
- **12.** Let $\alpha \in \mathbb{R}$.
- (a) Let $f(x) = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$, |x| < 1. Prove that $(1+x)f'(x) = \alpha f(x)$.
- (b) Prove that any function f satisfying the differential equation $(1+x)f'(x) = \alpha f(x)$ has form $f(x) = c(1+x)^{\alpha}$ for some $c \in \mathbb{R}$, and deduce "the binomial formula" $(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{n}{n} x^n, |x| < 1$.
- **13.** The Fibbonaci sequence is defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_n + a_{n+1}$ for all $n \in \mathbb{N}$.
- (a) Show that $a_{n+1}/a_n \leq 2$.
- (b) Let $f(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$. Prove that f is defined on $\left(\frac{-1}{2}, \frac{1}{2}\right)$.
- (c) Prove that if |x| < 1/2, then $f(x) = \frac{1}{1-x-x^2}$.
- (d) Decompose $\frac{1}{1-x-x^2}$ as $\frac{b_1}{c_1-x}+\frac{b_2}{c_2-x}$ to obtain another power series for f and prove that $a_n=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n$ $\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n, n \in \mathbb{N}.$

- **14.** (a) Prove that the series $\sum 2^n \sin \frac{1}{3^n x}$ converges uniformly on $[a, +\infty)$ for any a > 0.
- (b) By considering $\sum 2^n \sin \frac{1}{3^n x}$ for $x = \frac{2}{3^n \pi}$, show that the series doesn't converge uniformly on $(0, \infty)$.
- (c) For $f(x) = \sum 2^n \sin \frac{1}{3^n x}$, x > 0, find (that is, express in the form of a series) f'.
- **15.** Find $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$.
- **16.** (a) Show that the series $\sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{2n+1} \frac{x^{n+1}}{2n+2}\right)$ converges to $\frac{1}{2}\log(1+x)$ locally uniformly on (-1,1), but converges to $\log 2$ at 1.
- (b) Why doesn't this contradict Abel's theorem?
- 17. (a) Prove that for every $n \in \mathbb{N}$, $\int_0^\pi x \cos(nx) dx = \frac{-2}{n^2}$ if n is odd and 0 if n is even.
- (b) Prove that for every $n \in \mathbb{N}$, $f_n(x) = 1 + 2\sum_{i=1}^n \cos(ix) = \sin((n+1/2)x)/\sin(x/2)$. Prove that the function $x/\sin(x/2)$, $x \neq 0$, can be extended to 0 by continuity. Deduce that $\int_0^\pi x f_n(x) dx \longrightarrow 0$ as $n \longrightarrow \infty$. (*Hint:* Use the Riemann-Lebesgue lemma.)
- (c) Combine (a) and (b) to prove that $\sum_{\text{odd }n\in\mathbb{N}}\frac{1}{n^2}=\frac{\pi^2}{8}$. Notice that $\sum_{\text{even }n\in\mathbb{N}}\frac{1}{n^2}=\frac{1}{4}\sum_{\text{all }n\in\mathbb{N}}\frac{1}{n^2}$ and deduce that $\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.