Math 4181H

Midterm 4 review problems

- 1. (a) If the function $f:[a,b] \longrightarrow \mathbb{R}$ has the property that U(f,P) = L(f,P) for every partition P of [a,b], what can be said about f?
- (b) If the function $f:[a,b] \longrightarrow \mathbb{R}$ has the property that U(f,P) = L(f,P) for some partition P of [a,b], what can be said about f?
- 2. Prove that every monotone function on a closed bounded interval is integrable.
- **3.** If $\int_a^b f = p$ and $\int_a^b g = q$, find $\int_a^b \left(\int_a^b f(x)g(y) dx \right) dy$.
- **4.** Let f be the Riemann function $(f(x) = \frac{1}{n} \text{ if } x = \frac{m}{n} \in \mathbb{Q} \text{ in lowest terms and } f(x) = 0 \text{ if } x \text{ is irrational}).$ Prove that f is integrable on [0,1] and $\int_0^1 f = 0$.
- 5. Find integrable functions whose composition is not integrable.
- **6.** Let f be bounded on [a, b].
- (a) For any partition P of [a, b], prove that $\Delta(|f|, P) \leq \Delta(f, P)$.
- (b) If f is intergable, prove that so is |f|.
- (c) If f and g are integrable on [a, b], prove that so are $\max(f, g)$ and $\min(f, g)$.
- (d) Prove that f is integrable iff $f^+ = \max(f, 0)$ and $f^- = \min(f, 0)$ are integrable.
- 7. Suppose that f is locally integrable on $[0, +\infty)$ and $\lim_{x\to +\infty} f(x) = a$. Prove that $\lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t) dt = a$.
- **8.** If f is integrable on [a, b], prove that $\int_a^b f(x) dx = \int_a^b f(b+a-x) dx$.
- **9.** Find $\int_0^1 L(x) dx$ where L is the Cantor ladder function.
- **10.** If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is periodic with period a and integrable on [0, a], show that for any $b \in \mathbb{R}$, f is integrable on [b, b+a] and $\int_{b}^{b+a} f = \int_{0}^{a} f$.
- 11. Suppose that f is integrable on [a,b]. Prove that there is $c \in [a,b]$ such that $\int_a^c f = \int_c^b f$. Show that it is not always possible to choose c to be in (a,b).
- 12. Use the Fundamental Theorem of Caluclus and Darboux's theorem to give another proof of the Intermediate Value Theorem.
- **13.** Let f be a continuous function on [a, b] with the property that $\int_a^b fg = 0$ for all continuous functions g on [a, b] satisfying g(a) = g(b) = 0. Prove that f = 0.
- **14.** Let the function f be integrable and ≥ 0 on an interval [a,b] and suppose there is $c \in [a,b]$ such that f is continuous at c and f(c) > 0. Prove that $\int_a^b f > 0$.
- **15.** Let f be integrable on [a,b], let $c \in (a,b)$, and let $F(x) = \int_a^x f \, dt$, $x \in [a,b]$. Prove or disprove:
- (i) If f is differentiable at c, then F is differentiable at c.
- (ii) If f is differentiable at c, then F' is continuous at c.
- (iii) If f' is continuous at c, then F' is continuous at c.
- **16.** Find $(f^{-1})'(0)$ if $f(x) = \int_0^x (1 + \sin(\sin t)) dt$.
- 17. (a) Find the derivatives of $F(x) = \int_1^x \frac{1}{t} dt$ and $G(x) = \int_b^{bx} \frac{1}{t} dt$.
- (b) Use (a) to prove that for a>1 and b>0, $\int_1^a 1/t\,dt=\int_b^{ab} 1/t\,dt.$
- (c) For a, b > 1 prove that $\int_1^a \frac{dt}{t} + \int_1^b \frac{dt}{t} = \int_1^{ab} \frac{dt}{t}$.
- **18.** Let $f(x) = \sin(1/x)$, $x \neq 0$, and f(0) = 0. Is the function $F(x) = \int_0^x f$ differentiable at 0? (*Hint:* Differentiate the function $G(x) = x^2 \cos(1/x)$ and compare G' and f.)
- **19.** Prove that for every integer $n \ge 2$, $\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$.

- **20.** Compute the improper integral $\int_0^1 \log x \, dx$.
- **21.** Prove the following version of the integration by parts for improper integrals: If f and g are locally integrable on $[a,\beta)$ (where $\beta \in \mathbb{R} \cup \{+\infty\}$) and have primitives $F = \int f$ and $G = \int g$ on $[a,\beta)$, $\lim_{x\to\beta^-} F(x)G(x)$ exists, Fg has a ptimitive, and $\int_a^\beta F(x)g(x)\,dx$ converges, then $\int_a^\beta f(x)G(x)\,dx = \lim_{x\to\beta^-} F(x)G(x) F(a)G(a) \int_a^\beta F(x)g(x)\,dx$.
- **22.** Determine if the improper integral $\int_0^\infty \sin(x^2) dx$ converges.
- **23.** Using the fact that $\int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi}/2$, find $(-1/2)! = \Gamma(1/2)$ and $(1/2)! = \Gamma(3/2)$.
- **24.** Find the Taylor polynomial $P_{a,n,f}$ for
- (a) $f(x) = e^{\sin x}$, a = 0, n = 3.
- (b) $f(x) = e^x$, a = 1.
- (c) $f(x) = x^5 + x^3 + x$, a = 0, n = 4.
- **25.** (a) For every $n \in \mathbb{N}$, find the Taylor polynomial $P_{0,4n+2,f}$ for $f(x) = \sin(x^2)$.
- (b) Find $f^{(k)}(0)$ for all k.
- (c) In general, if $f(x) = g(x^m)$, find $f^{(k)}(0)$ in terms of the derivatives of g at 0.
- **26.** Find $P_{0.5,f}$ for
- (a) $f(x) = e^x \sin x$.
- (b) $f(x) = \tan x$.
- **27.** Find (a) $\lim_{x\to 0} \frac{e^x 1 x \frac{1}{2}x^2}{x \sin x}$.
- (b) $\lim_{x\to 0} \left(\frac{1}{\sin^2 x} \frac{1}{x^2} \right)$.
- (c) $\lim_{x\to 0} \left(\frac{1}{\sin^2 x} \frac{1}{\sin(x^2)} \right)$.
- **28.** Use Taylor polynomials to reprove Leibniz's identity $(fg)^{(n)}(a) = \sum_{i=0}^{n} {n \choose i} f^{(n-i)}(a) g^{(i)}(a)$.
- **29.** Let $f(x) = \begin{cases} \frac{e^x 1}{x}, & x \neq 0 \\ 1, & x = 0. \end{cases}$ Taking it for granted that f is infinitely differentiable on \mathbb{R} , find the Taylor polynomial of degree n for f at 0, and compute $f^{(n)}(0)$ for all n.
- **30.** Define $f(x) = \frac{\log(1+x^2)}{x^2}$ for $x \neq 0$ and f(0) = 1. Taking it for granted that f is infinitely differentiable on \mathbb{R} , find the derivative $f^{(100)}(0)$.
- **31.** Using the fact that $\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{3}$, show that $\pi = 3.14159...$