Math 4181H

5pt

5pt

3pt

3pt

Solutions to Homework 1

Chapter 1, pp. 13-18:

1. Prove the following:

(ii) For any $x, y \in \mathbb{R}$, $x^2 - y^2 = (x - y)(x + y)$.

Solution. Applying (P9), (P8), (P1), and the definition of -y, we get

$$(x-y)(x+y) = (x+(-y))(x+y) = (x+(-y))x + (x+(-y))y = x^2 + (-y)x + xy + y(-y).$$

Now, using the fact that (-y)x = -xy (proven in lecture notes), we get

$$x^{2} + (-y)x + xy + y(-y) = x^{2} - xy + xy - y^{2} = x^{2} - y^{2}.$$

(iii) If $x^2 = y^2$, then x = y or x = -y.

Solution. By (ii), we have $x^2 - y^2 = (x - y)(x + y)$, so if $x^2 - y^2 = 0$, then (x - y)(x + y) = 0, so x - y = 0 or x + y = 0 (as it was proven in lecture notes). In the first case, x + (-y) = 0, so x = -(-y) = y (proven in lecture notes); in the second case, x = -y.

Cf. 2. What is wrong with the following proofs?

5pt (a) Let $x = y \neq 0$. Then $x^2 = xy$, so $x^2 - y^2 = xy - y^2$, so (x + y)(x - y) = y(x - y), so x + y = y, so 2y = y, so 2 = 1.

Solution. The mistake in the proof is that (x + y)(x - y) = y(x - y) does not imply that x + y = y (since x - y = 0).

5pt (b) If 2 = 1 then $2 \cdot 2 = 2 \cdot 1$ then 4 = 2 then 4 - 3 = 2 - 3 then 1 = -1 then $1^2 = (-1)^2$ then 1 = 1, which is true. So, 2 = 1.

Solution. If a statement P implies a true statement, it doesn't mean that P is true itself.

In contrast, if a true statement implies P, then P is true. (If you can derive from 1 = 1 that 2 = 1, then 2 = 1 indeed. But you cannot.)

We define a/b (as well as a:b and $\frac{a}{b}$) as ab^{-1} .

3. Let $a, b, c, d \in \mathbb{R}$. Prove the following:

(i) If $b, c \neq 0$, then a/b = (ac)/(bc).

Solution. Repeatedly applying axioms (P5) and (P6) (and implicitly (P8)),

$$(ac)/(bc) = (ac)(bc)^{-1} = (ac)(b^{-1}c^{-1}) = a(c(b^{-1}c^{-1})) = a((cb^{-1})c^{-1}) = a((b^{-1}c)c^{-1}) = a(b^{-1}(cc^{-1})) = a(b^{-1}1) = ab^{-1} = a/b.$$

_{3pt} (ii) if $b, d \neq 0$, then a/b + c/d = (ad + bc)/(bd).

Solution. By (i), $\frac{a}{b} = \frac{ad}{bd}$ and $\frac{c}{d} = \frac{bc}{bd}$. So,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{bc}{bd} = (ad)(bd)^{-1} + (bc)(bd)^{-1} = (ad + bc)(bd)^{-1} = \frac{ad + bc}{bd}.$$

 $_{3\mathrm{pt}}$ (vi) If $b,d\neq 0$, then a/b=c/d iff ad=bc.

Solution. By (i), $\frac{a}{b} = \frac{ad}{bd}$ and $\frac{c}{d} = \frac{bc}{bd}$. So, $\frac{a}{c} = \frac{b}{d}$ iff $\frac{ad}{cd} = \frac{bc}{cd}$ iff $(ad)(cd)^{-1} = (bc)(cd)^{-1}$ iff ad = bc by the cancellation property.

(vii) If $a, b \neq 0$, prove that a/b = b/a iff a = b or a = -b.

Solution. By (vi), $\frac{a}{b} = \frac{b}{a}$ iff $a^2 = b^2$, which, by (1)(iii), holds iff a = b or a = -b.

For $a, b \in \mathbb{R}$ we define a < b if $b - a \in P$ (that is, is positive), a > b if b < a, $a \le b$ if a < b or a = b, and $a \ge b$ if $b \le a$.

- **5.** Let $a, b, c, d \in \mathbb{R}$. Prove the following:
- $_{2\mathrm{pt}}$ (i) If a < b and c < d then a + c < b + d.

Solution. If a < b then a + c < b + c (proven in lecture notes), and, similarly, if c < d then b + c < b + d. So, a + c < b + d.

 $_{\mathrm{2pt}}$ (iii) If a < b and c > d then a - c < b - d.

Solution. If c > d then -c < -d (proven in lecture notes), so by (i), a - c = a + (-c) < b + (-d) = b - d.

 $_{2pt}$ (v) If a < b and c < 0 then ac > bc.

Solution. If c < 0, then -c > 0. We proved that in this case a(-c) < b(-c), so -ac < -bc, so ac > bc.

 $_{2pt}$ (vi) If a > 1 then $a^2 > a$.

Solution. Since a > 1, we have a > 0, so, since a > 1, we get $a^2 = aa > 1a = a$.

 $_{2pt}$ (vii) If 0 < a < 1 then $a^2 < a$.

Solution. Since a > 0, and a < 1, we get $a^2 = aa < 1a = a$.

 $_{2pt}$ (viii) If $0 \le a < b$ and $0 \le c < d$, then ac < bd.

Solution. Since a < b and c > 0, we have ac < bc; since c < d and b > 0, we have bc < bd. So, ac < bd.

 $_{2pt}$ (ix) If $0 \le a < b$ then $a^2 < b^2$.

Solution. This is a special case of (viii), with c = a and d = b.

 $_{2pt}$ (x) If $a, b \ge 0$ and $a^2 < b^2$, then a < b.

Solution. We can deduce this from (ix) "by contraposition": assume that a < b is not true, and show that $a^2 < b^2$ is not true. Indeed, if a = b then $a^2 = b^2$, and if a > b then $a^2 > b^2$ by (ix).

8. Let F be a field (that is, a set with two operations satisfying (P1)–(P9)) with an order "<" satisfying (P10')–(P12') (from my Lecture Notes) or (P'10)-(P'13) from exercise 8 in Spivak. Define $P = \{a \in F : a > 0\}$. Prove that P satisfies (P10)–(P12).

Solution. Assume

(P10') for any two numbers $a, b \in \mathbb{R}$ exactly one of the following holds: either a < b, or a = b, or b < a;

(P10'') if a < b and b < c then a < c;

(P11') if a < b then for any c, a + c < b + c;

(P12') if a < b then for any c > 0, ac < bc.

Let $P = \{ a \in \mathbb{R} : a > 0 \}.$

For any $a \in \mathbb{R}$, taking b = 0 in (P10'), we see that exactly one of the following is true: either a < 0, or a = 0, or 0 < a. We have 0 < a iff $a \in P$. If a < 0, then adding -a to both parts and using (P11') we get 0 = a - a < 0 - a = -a, so $-a \in P$; conversely, if $-a \in P$, then 0 < -a, and adding a to both parts we get a < 0. So, exactly one of the following is true: either $a \in P$, or a = 0, or $-a \in P$, which proves (P10).

Let $a, b \in P$. Then a > 0, so by (P11') a + b > 0 + b = b, and since also b > 0, by (P10") we have a + b > 0, so $a + b \in P$. This proves (P11).

Let $a, b \in P$. Then a > 0 and b > 0, so by (P12'), ab > 0b = 0, so $ab \in P$. This proves (P12).

- **12.** Recall that, for $x \in \mathbb{R}$, the absolute value |x| is defined by |x| = x if $x \ge 0$ and |x| = -x if x < 0. Prove the following:
- _{2pt} (ii) For any $x \in \mathbb{R} \setminus \{0\}$, |1/x| = 1/|x|.

Solution. If x > 0, then 1/x > 0. (Proven in lecture notes.) So, |1/x| = 1/|x| = 1/|x|. If x < 0, then 1/x < 0. So, |1/x| = -(1/x) = 1/(-x) = 1/|x|.

_{2pt} (iii) For any $x \in \mathbb{R}$ and $y \in \mathbb{R} \setminus \{0\}$, |x|/|y| = |x/y|.

Solution. $|x/y| = |x| \cdot |y^{-1}| = |x| \cdot |y|^{-1} = |x|/|y|$.

 $_{2\mathrm{pt}}$ (iv) For any $x, y \in \mathbb{R}, |x - y| \le |x| + |y|$.

Solution. $|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$.

 $_{2pt}$ (v) For any $x, y \in \mathbb{R}$, $|x| - |y| \le |x - y|$.

Solution. $|x - y| + |y| \ge |x - y + y| = |x|$, so $|x| - |y| \le |x - y|$.

- $\text{(vi) } \textit{For any } x,y \in \mathbb{R}, \ \big| |x| |y| \big| \leq |x-y|. \\ \textit{Solution. We have both } |x| |y| \leq |x-y| \text{ and } -(|x|-|y|) = |y| |x| \leq |y-x| = |x-y|, \text{ so } |x| |y| \geq -|x-y|, \\ \text{so } \big| |x| |y| \big| \leq |x-y|.$
- 20. Prove that if $x, x_0, y, y_0, \varepsilon$ are real numbers such that $|x x_0| < \varepsilon/2$ and $|y y_0| < \varepsilon/2$, then $|(x + y) (x_0 + y_0)| < \varepsilon$ and $|(x y) (x_0 y_0)| < \varepsilon$. Solution.

$$\left| (x+y) - (x_0 + y_0) \right| = \left| (x-x_0) + (y-y_0) \right| \le |x-x_0| + |y-y_0| < \varepsilon/2 + \varepsilon/2 = \varepsilon/2(1+1) = \varepsilon \cdot 2^{-1} \cdot 2 = \varepsilon \cdot 1 = \varepsilon.$$

$$\left| (x-y) - (x_0 - y_0) \right| = \left| (x-x_0) - (y-y_0) \right| \le |x-x_0| + |y-y_0| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$