Math 4181H

5pt

10pt

Solutions to Homework 10

A1. For each of the following series determine whether it converges absolutely, converges conditionally, diverges 15ptto ∞ , or just diverges (and name the test that proves your claim):

(a)
$$\sum \frac{(-1)^n}{n^{1/n}}$$
; (b) $\sum \frac{(-1)^n n^2}{2^n}$; (c) $\sum \frac{(-1)^n}{\sqrt{n}}$; (d) $\sum \frac{\sin n}{\log n}$; (e) $\sum \sin(1/n)$.

(a) $\sum \frac{(-1)^n}{n^{1/n}}$ diverges by the vanishing test, since $\left|\frac{(-1)^n}{n^{1/n}}\right| = \frac{1}{|n^{1/n}|} \longrightarrow 1 \neq 0$.

(b) $\sum \frac{(-1)^n n^2}{2^n}$ converges absolutely by the root test, since $\sqrt[n]{\left|\frac{(-1)^n n^2}{2^n}\right|} = \frac{\sqrt[n]{n^2}}{2} \longrightarrow \frac{1}{2} < 1$.

(c) $\sum \frac{(-1)^n}{\sqrt{n}}$ diverges absolutely by comparison test, since $\left|\frac{(-1)^n}{\sqrt{n}}\right| = \frac{1}{\sqrt{n}} > \frac{1}{n}$ and $\sum \frac{1}{n} = \infty$, and converges conditionally by Leibniz's test, since $\frac{1}{\sqrt{n}} \searrow 0$.

(d) $\sum \frac{\sin n}{\log n}$ converges conditionally by Dirichlet's test, since $\frac{1}{\log n} \searrow 0$ and the sequence of partial sums of $\sin n$ are bounded.

To show that this series doesn't converge absolutely, let $\varepsilon = \sin \frac{\pi}{10}$; then $|\sin x| < \varepsilon$ iff $|x - k\pi| < \frac{\pi}{10}$ for some $k \in \mathbb{Z}$. If $n \in \mathbb{N}$ is such that $k\pi - \frac{\pi}{10} < n < k\pi + \frac{\pi}{10}$ for some $k \in \mathbb{Z}$, then $k\pi + \frac{\pi}{10} < n + 1 < (k+1)\pi - \frac{\pi}{10}$, so, if $|\sin n| < \varepsilon$, then $|\sin(n+1)| > \varepsilon$. It follows that for any n, $\frac{|\sin n|}{\log n} + \frac{|\sin(n+1)|}{\log(n+1)} > \frac{|\sin n|}{\log(n+1)} + \frac{|\sin(n+1)|}{\log(n+1)} > \frac{\varepsilon}{\log(n+1)}$,

$$\sum_{n=2}^{\infty} \left| \frac{\sin n}{\log n} \right| = \sum_{n=1}^{\infty} \left(\frac{\left| \sin 2n \right|}{\log 2n} + \frac{\left| \sin (2n+1) \right|}{\log (2n+1)} \right) \ge \sum_{n=1}^{\infty} \frac{\varepsilon}{\log (2n+1)} = \infty$$

(since $\frac{1}{\log(2n+1)} > \frac{1}{n}$ for all n large enough).

(e) $\sin(1/n)/(1/n) \longrightarrow 1$, $\sum \frac{1}{n} = \infty$, so $\sum \sin(1/n) = \infty$ by the limit comparison test.

A2. Prove that the series $\sum \frac{1}{n(\log n)(\log(\log n))^{\alpha}}$ converges for $\alpha > 1$ and diverges for $0 < \alpha \le 1$.

Solution. I'll use the integral test (the condensation test also works). The function $f(x) = \frac{1}{x(\log x)(\log(\log x))^{\alpha}}$ is positive and decreasing on $[100, +\infty)$, with $f(n) = \frac{1}{n(\log n)(\log(\log n))^{\alpha}}$ for all $n \ge 100$, so the series converges iff the improper integral $\int_{100}^{\infty} f$ does. (Why 100? To be sure that $\log(\log x)$ is defined.) We have

$$\int_{100}^{\infty} \frac{dx}{x(\log x)(\log(\log x))^{\alpha}} = \int_{100}^{\infty} \frac{d\log x}{\log x(\log(\log x))^{\alpha}} = \int_{100}^{\infty} \frac{d\log x}{\log x(\log(\log x))^{\alpha}} = \int_{100}^{\infty} \frac{d\log x}{\log x(\log(\log x))^{\alpha}} = \int_{100}^{\infty} \frac{d\log(\log x)}{\log(\log x)^{\alpha}} = \int_{\log\log 100}^{\infty} \frac{dy}{y^{\alpha}}|_{y=\log\log x},$$

which converges for $\alpha > 1$ and diverges for $\alpha \leq 1$.

A3. If Λ is an uncountable set, $\Lambda \longrightarrow \mathbb{R}$, $i \mapsto a_i$, is a mapping, and $a_i > 0$ for all i, prove that $\sum a_i = \infty$. 10pt (That is, prove that for any $M \in \mathbb{R}$ there exists a finite set $F \subset \Lambda$ such that $\sum_{i \in F} a_i > M$.)

Solution. For every $n \in \mathbb{N}$ let $P_n = \{i \in \Lambda : a_i > 1/n\}$. Since for every i there is n such that $a_i > 1/n$, so $a_i \in P_n$, we have $\bigcup_{n=1}^{\infty} P_n = \Lambda$. If all P_n are finite, then Λ is at most countable. Hence, for some n, P_n is infinite (and even uncountable). For any $N \in \mathbb{N}$ choose nN elements $a_1, \ldots, a_{nN} \in P_n$, then $a_1 + \cdots + a_{nN} > nN \frac{1}{n} = N$.

Chapter 23, pp. 489-498:

10. If $a_i = b_i = \frac{(-1)^i}{\sqrt{i}}$, $i \in \mathbb{N}$, prove that the series $\sum a_i$ (and $\sum b_i$) converge but their Cauchy product $\sum_{k=2}^{\infty} \left(\sum_{i=1}^{k-1} a_i b_{k-i}\right)$ diverges.

Solution. The series $\sum \frac{(-1)^i}{\sqrt{i}}$ converges (conditionally) by the alternating test. For any 0 < i < k, $\sqrt{i(k-i)} \le (i+(k-i))/2 = k/2$; so, for any integer $k \ge 2$,

$$\Big|\sum_{i=1}^{k-1} \frac{(-1)^i}{\sqrt{i}} \cdot \frac{(-1)^{k-i}}{\sqrt{k-i}}\Big| = \Big|(-1)^k \sum_{i=1}^{k-1} \frac{1}{\sqrt{i} \cdot \sqrt{k-i}}\Big| = \sum_{i=1}^{k-1} \frac{1}{\sqrt{i} \cdot \sqrt{k-i}} \le (k-1) \frac{1}{k/2},$$

which $\longrightarrow 0$ as $k \longrightarrow \infty$. Hence, the series $\sum_{k=2}^{\infty} \left(\sum_{i=1}^{k-1} \frac{(-1)^i}{\sqrt{i}} \cdot \frac{(-1)^{k-i}}{\sqrt{k-i}} \right)$ diverges by the vanishing test.

A4. A function h on an interval [a,b] is said to be a step function if there is a partition $a = x_0 < x_1 < ... < x_n = b$ of [a,b] such that for every i, h is constant on the interval (x_{i-1},x_i) . Prove that for any closed bounded interval [a,b] the step functions are dense in C([a,b]) with respect to the uniform norm: for every continuous function f on [a,b] and any $\varepsilon > 0$ there exists a step function h on [a,b] such that $||f-h|| < \varepsilon$.

Solution. Let $\varepsilon > 0$. Since [a,b] is a closed bounded interval, f is uniformly continuous; let $\delta > 0$ be such that $|f(x) - f(y)| < \varepsilon$ when $|x - y| < \delta$. Let $P = \{x_0, \dots, x_n\}$ be any partition of [a,b] with mesh $P < \delta$. Define $h(x) = f(x_i)$ for $x \in (x_{i-1}, x_i]$, $i = 1, \dots, n$, and $h(x_0) = f(x_0)$. Then h is a step function, and for every $x \in [a,b]$, if i is sucj that $x \in (x_{i-1},x_i]$, we have $|f(x) - h(x)| = |f(x) - f(x_i)| < \varepsilon$ since $|x - x_i| < \delta$.

A5. Let (f_n) be a sequence of functions $A \longrightarrow \mathbb{R}$ and let $f_n \Longrightarrow f$.

(a) If all f_n are uniformly continuous on A prove that f is uniformly continuous on A.

Solution. Let $\varepsilon > 0$. Find n such that $||f - f_n|| < \varepsilon/3$. Find $\delta > 0$ such that for any $x, y \in A$ with $|x - y| < \delta$, $|f_n(x) - f_n(y)| < \varepsilon/3$. Then for any $x, y \in A$ with $|x - y| < \delta$,

$$|f(x) - f(y)| \le ||f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \varepsilon.$$

5pt (b) If the sequence (f_n) is "uniformly Lipschitz on A", that is, if there is C such that $|f_n(x) - f_n(y)| \le C|x-y|$ for all $n \in \mathbb{N}$ and all $x, y \in A$, prove that f is Lipschitz on A.

Solution. Let $x, y \in A$. Let $\varepsilon > 0$; find n such that $||f(x) - f_n(x)|| < \varepsilon/2$ and $||f(y) - f_n(y)|| < \varepsilon/2$. Then

$$|f(x) - f(y)| \le ||f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \varepsilon/2 + C|x - y| + \varepsilon/2 = C|x - y| + \varepsilon.$$

Since this is true for any $\varepsilon > 0$, $|f(x) - f(y)| \le C|x - y|$.

Another solution. For any $x, y \in A$, since $|f_n(x) - f_n(y)| \le C|x - y|$ for all n,

$$|f(x) - f(y)| = \lim_{n \to \infty} |f_n(x) - f_n(y)| \le C|x - y|.$$

Chapter 24, pp. 517-525:

5pt

5pt

5pt

2. Find the pointwise limit of (f_n) and decide whether (f_n) converges uniformly to this limit.

_{5pt} (i)
$$f_n(x) = x^n - x^{2n}$$
 on [0, 1].

Solution. For any $x \in [0,1]$, $x^n - x^{2n} \to 0$ as $n \to \infty$, so $f_n \to 0$ on [0,1]. For any n, $f'_n(x) = nx^{n-1} - (2n)x^{2n-1}$, which is = 0 iff $x = \frac{1}{\sqrt[n]{2}}$. Since $f_n(0) = f_n(1) = 0$, $|f_n|$ attains its maximum at this point, so $||f_n||_{[0,1]} = \sup_{x \in [0,1]} |f_n(x)| = \left(\frac{1}{\sqrt[n]{2}}\right)^n - \left(\frac{1}{\sqrt[n]{2}}\right)^{2n} = 1/4$. (Or: $\max_{[0,1]} |x^{2n} - x^n| = \max_{[0,1]} |y^2 - y| = 1/4$.) Since $||f_n|| \to 0$, the convergence $f_n \to 0$ is not uniform.

(ii) $f_n(x) = \frac{nx}{1+n+x}$ on $[0, \infty)$.

Solution. For each $x \geq 0$, $\lim_{n \to \infty} \frac{nx}{1+n+x} = x$, so $f_n \longrightarrow f$ where f(x) = x. For any n,

$$|f_n(x) - f(x)| = \left| \frac{nx}{1+n+x} - x \right| = \frac{x+x^2}{1+n+x},$$

which is an unbounded function, so $||f_n - f|| = \infty$. So, the convergence is not uniform.

(iv)
$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}} \ on \ \mathbb{R}.$$

Solution. For every x, $\lim_{n\to\infty}\sqrt{x^2+\frac{1}{n^2}}=|x|$, so $f_n\longrightarrow f$ where f(x)=|x|. For any n, consider the function $g_n(x)=f_n(x)-f(x)=\sqrt{x^2+\frac{1}{n^2}}-|x|$. This function is even, nonnegative, and for x>0, $g'_n(x)=\frac{x}{\sqrt{x^2+\frac{1}{n^2}}}-1<0$, so g_n is decreasing on $[0,\infty)$. Hence, $\|g_n\|=\sup_{x\in\mathbb{R}}|g_n(x)|=g_n(0)=\frac{1}{n}$, which tends to 0 as $n\longrightarrow\infty$. Thus, $f_n\Longrightarrow f$.

29. (a) Suppose that (f_n) is a sequence of continuous functions on [a,b] that converges uniformly on [a,b] to a function f, and let (x_n) be a sequence in [a,b] with $\lim x_n = c$. Prove that $\lim f_n(x_n) = f(c)$.

Solution. Since f_n are continuous and $f_n \Longrightarrow f$, f is also continuous. Let $\varepsilon > 0$. Find $\delta > 0$ such that $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$. Find N such that for any $n \ge N$, $||f_n - f|| < \varepsilon/2$ and $|x_n - c| < \delta$. Then for any $n \ge N$,

$$|f_n(x_n) - f(c)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(c)| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

 $_{\mathrm{5pt}}$ (b) Is this statement true without assuming that f_n are continuous?

Solution. Of course, not. Even if all f_n are equal to f, if f is discontinuous at c, then there is a sequence (x_n) such that $x_n \longrightarrow c$ but $f(x_n) \not\longrightarrow f(c)$.