Math 4181H

Solutions to Homework 3

A1. Prove that for any $n, k \in \mathbb{N}$ with $k \leq n$, $\binom{n}{k}$ equals the number of k-element subsets in an n-element set: if 10pt X is a set with |X| = n, then $\binom{n}{k} = \#\{A \subseteq X : |A| = k\}$.

Solution. The statement is true for n=1: we have $\binom{1}{1}=1$ and a 1-element set contains exactly one subset of cardinality 1. Assume, by induction, that the statement is true for some $n \in \mathbb{N}$. Let X be a (n+1)-element set. Pick an element x_0 of X and put $X' = X \setminus \{x_0\}$, then |X'| = n. The k-element subsets of X are of two sorts: those that contain x_0 , and those that don't. For any $A \subseteq X$ such that |A| = k and $x_0 \in A$ put $A' = A \setminus \{x_0\}$, then $A' \subseteq X'$ and |A'| = k - 1; conversely, for any $A' \subseteq X'$ with |A'| = k - 1 for $A = A' \cup \{x_0\}$ we have $A \subseteq X'$ and |A| = k. So, the set of k-element subsets of X that contain x_0 is in one-to-one correspondence with the set of (k-1)-element subsets of X'. So, by induction hypothesis, $\#\{A\subseteq X: |A|=k \land x_0\in A\}=\binom{n}{k-1}$. As for k-element sibsets of X that don't contain x_0 , these are exactly k-element sybsets of X', so, by induction hypothesis, $\#\{A\subseteq X: |A|=k \land x_0\not\in A\}=\binom{n}{k}$. The total number of k-element subsets of X is therefore $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$, which justifies the induction step.

Chapter 2, pp. 27-33:

3. (e) Prove that for any $n \in \mathbb{N}$:

(i)
$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$
.

10pt

5pt

Solution. By the binomial formula, $2^n = (1+1)^n = \sum_{j=0}^n \binom{n}{j} 1^j 1^{n-j} = \sum_{j=0}^n \binom{n}{j}$.

(ii)
$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = 0$$
.

Solution. By the binomial formula, $0 = 0^n = (-1+1)^n = \sum_{j=0}^n \binom{n}{j} (-1)^j 1^{n-j} = \sum_{j=0}^n (-1)^j \binom{n}{j}$. (iii, iv) $\sum_{\substack{0 \le j \le n \\ j \text{ is odd}}} \binom{n}{j} = 2^{n-1}$ and $\sum_{\substack{0 \le j \le n \\ j \text{ is even}}} \binom{n}{j} = 2^{n-1}$.

(iii, iv)
$$\sum_{\substack{0 \le j \le n \ j \text{ is odd}}} {n \choose j} = 2^{n-1}$$
 and $\sum_{\substack{0 \le j \le n \ j \text{ is even}}} {n \choose j} = 2^{n-1}$

Solution. Let $E = \sum_{\substack{0 \le j \le n \\ j \text{ is even}}} \binom{n}{j}$ and $O = \sum_{\substack{0 \le j \le n \\ j \text{ is odd}}} \binom{n}{j}$. From (ii) we have

$$0 = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = \sum_{\substack{0 \le j \le n \\ j \text{ is odd}}} (-1)^{j} \binom{n}{j} + \sum_{\substack{0 \le j \le n \\ j \text{ is even}}} (-1)^{j} \binom{n}{j} = 1 \sum_{\substack{0 \le j \le n \\ j \text{ is even}}} \binom{n}{j} + (-1) \sum_{\substack{0 \le j \le n \\ j \text{ is odd}}} \binom{n}{j} = E - O,$$

so E = O. From (i) we have $E + O = 2^n$, so $O = E = 2^n/2 = 2^{n-1}$.

A2. Prove that for any $m \in \mathbb{N}$ and $n \in \mathbb{Z}$ there exist $k, r \in \mathbb{Z}$ with $0 \le r < m$ such that n = km + r. 10pt

Solution. First, assume that $n \in \mathbb{N}$, and use complete induction on n. If n < m, then n = 0m + n and we are done. If n > m, let n' = n - m, then $n' \in \mathbb{N}$ and n' < n; by induction hypothesis, n' = k'm + r for some $k' \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0 \le r < m$, so, n = n' + m = k'm + r + m = (k' + 1)m + r.

If n = 0, then n = 0m + 0.

If n < 0, then, as we proved, -n = lm + s for some $l \in \mathbb{Z}$ and $s \in \mathbb{Z}$ with $0 \le s < m$. If s = 0, then n = (-l)m + 0. If $s \ge 1$, then n = (-l)m - s = (-l - 1)m + (m - s), where 0 < m - s < m.

Another solution. Let $k = \lfloor n/m \rfloor$ and $z = \lfloor n/m \rfloor$ (the integer and the fractional parts of n/m), then n/m = k + z, so n = km + zm. Put r = zm, then n = km + r. Since $n, km \in \mathbb{Z}$, $r = n - km \in \mathbb{Z}$ as well. Since $0 \le z < 1$,

A3. (b) Show (by example) that if $a, b \in \mathbb{R}$ are irrational, then a + b can be rational or irrational. Prove that if a is irrational and b is rational, then a + b is irrational.

Solution. $\pm\sqrt{2}$ is irrational, $\sqrt{2} + (-\sqrt{2}) = 0$ is rational, $\sqrt{2} + \sqrt{2} = 2\sqrt{2}$ is irrational.

If b is rational and a+b is rational, then a=(a+b)-b is rational. (So, if b is rational and a is irrational, then a + b cannot be rational.)

(c) Show (by example) that if $a, b \in \mathbb{R}$ are irrational, then ab can be rational or irrational. Prove that if a is 5ptirrational and $b \neq 0$ is rational, then ab is irrational.

Solution. $\sqrt{2}$ and $\sqrt{3}$ are irrational, $\sqrt{2}\sqrt{3} = \sqrt{6}$ is irrational, $\sqrt{2}\sqrt{2} = 2$ is rational.

If $b \neq 0$ is rational and ab is rational, then $a = (ab)b^{-1}$ is rational. (So, if $b \neq 0$ is rational and a is irrational, then ab cannot be rational.)

1

(a) If $a \in \mathbb{R}$ is irrational, prove that a^{-1} is irrational. 5pt

Solution. First of all, since a is irrational, $a \neq 0$, so a^{-1} exists. Proving by contraposition, if a^{-1} is rational, $a^{-1} = n/m$ with $n, m \in \mathbb{Z}$, $n \neq 0$, then a = m/n and so, is also rational. Hence, if a is irrational, then a^{-1} is irrational.

Or, using (c): if a is irrational and a^{-1} is rational, then $1 = aa^{-1}$ is irrational, contradiction.

(d) Prove that if a>0 is irrational, then \sqrt{a} is irrational. Show (by example) that if $a\in\mathbb{R}$ is irrational, then 5pt a^2 can be rational or irrational.

Solution. If a>0 and \sqrt{a} is rational, then $a=(\sqrt{a})^2$ is rational; so, if a is irrational, then \sqrt{a} cannot be

 $(\sqrt{2})^2 = 2$ is rational. If b is irrational (say, $b = \sqrt{2}$), then $a = \sqrt{b}$ is irrational with $a^2 = b$ being also irrational.

14(b). Prove that $\alpha = \sqrt{2} + \sqrt{3}$ is irrational. 5pt

> Solution. We have $\alpha^2 = 5 + 2\sqrt{6}$, which is irrational. $(\sqrt{6} \text{ is irrational, so } 2\sqrt{6} \text{ is irrational, so } 5 + 2\sqrt{6} \text{ is}$ irrational.) Hence, α is also irrational.

A4. Prove that the set of irrational numbers is dense in \mathbb{R} . 5pt

Solution. The numbers of the form $\sqrt{2} + q$ with $q \in \mathbb{Q}$ are all irrational. Let's show that numbers of this form are dense in \mathbb{R} . Take any (open) interval (a,b), find a rational number q in the interval $(a-\sqrt{2},b-\sqrt{2})$, then $q + \sqrt{2}$ is in the interval (a, b).

Another solution. Every interval I in \mathbb{R} has cardinality of continuum, whereas \mathbb{Q} is countable, so I cannot consist of points of \mathbb{Q} only. Hence, every interval in \mathbb{R} contains irrational numbers.

A5. Let $A = \{a \in \mathbb{Q} \mid a^2 < 2\}$. Find sup A and inf A (and prove your statement, of course).

Solution. I claim that $\sup A = \sqrt{2}$. Indeed, for any $a \in A$ we have a < 0 or a > 0, $a^2 < 2 = \sqrt{2}^2$; in both cases we have $a < \sqrt{2}$, that is, $\sqrt{2}$ is an upper bound of A. And if $c < \sqrt{2}$, then the interval $(c, \sqrt{2})$ contains a positive rational number a, then $a^2 < \sqrt{2}^2 = 2$, so $a \in A$ and a > c; hence, c is not an upper bound of A. Similarly, inf $A = -\sqrt{2}$. Or, just notice that -A = A, so inf $A = -\sup(-A) = -\sup A = -\sqrt{2}$.

A6. (a) For a nonempty set $A \subseteq \mathbb{R}$ and a number $c \in \mathbb{R}$ define $cA = \{ca, a \in A\}$. Prove that if c > 0, then 5pt $\sup(cA) = c \sup A$, and if c < 0, then $\sup cA = c \inf A$.

Solution. I'll use "the criterion for supremum" which works in any case, regardless of whether the supremum is finite or infinite: $b = \sup A$ iff $a \leq b$ for all $a \in A$ and for any d < b there is $a \in A$ such that a > d. The corresponding criterion for infimum is: $b = \inf A$ iff $a \ge b$ for all $a \in A$ and for any d > b there is $a \in A$ such that a < d.

Ok, let c > 0, and let $b = \sup A$, finite or infinite. Since $b \ge a$ for all $a \in A$, we have $cb \ge ca$ for all $a \in A$. For any d < cb we have d/c < b, so there is $a \in A$ such that a > d/c, so ca > d, so d is not an upper bound of cA. Hence, $cb = \sup(cA)$.

Now let c < 0, and let $b = \inf A$, finite or infinite. Since $b \le a$ for all $a \in A$, we have $cb \ge ca$ for all $a \in A$. (Multiplication or division by c reverses the order on \mathbb{R} .) For any d < cb we have d/c > b, so there is $a \in A$ such that a < d/c, so ca > cd, so cd is not an upper bound of cA. Hence, $cb = \sup(cA)$.

(b) Let A and B be nonempty subsets of $(0,+\infty)$ (that is, a,b>0 for all $a\in A$ and $b\in B$). Let $AB=\{ab:a\in A\}$ 10pt $A, b \in B$. Prove that $\sup(AB) = \sup A \sup B$.

Solution. Let $s = \sup A$ and $r = \sup B$, then s, r > 0. For any $c \in AB$ we have c = ab for some $a \in A$ and $b \in B$; since $0 < a \le s$ and $0 < b \le r$ we have $c = ab \le sr$.

Let's assume that A and B are bounded above, so $s, r \in \mathbb{R}$. Now let $\varepsilon > 0$ be given. Let $0 < \delta < \min\{s, r\}$, to be defined later. Choose $a \in A$ with $a > s - \delta$ and $b \in B$ with $b > r - \delta$, then $ab > (s - \delta)(r - \delta) =$ $sr - (s+r)\delta + \delta^2 > sr - (s+r)\delta$. So, if $\delta < \varepsilon/(s+r)$, we obtain that $ab > sr - \varepsilon$, with $ab \in AB$. Hence,

If at least one of A and B, say A, is unbounded above, then $s = +\infty$, thus $sr = +\infty$. In this case the set AB is also unbounded above and $\sup(AB) = +\infty$ as well.