Math 4181H

Solutions to Homework 4

A1. If (x_n) and (y_n) are two sequence in \mathbb{R} converging to the same limit a, prove that the sequence 5pt $(x_1, y_1, x_2, y_2, \ldots)$ also converges to a.

Solution. Let $\varepsilon > 0$. Find k such that for all $n \ge k$, $|x_n - a| < \varepsilon$ and $|y_n - a| < \varepsilon$. Then for any $n \ge 2k$, if n is odd, then the n-th element of the sequence is $z_n = x_{(n+1)/2}$ with (n+1)/2 > k, so $|z_n - a| < \varepsilon$; and if n is even, then the *n*-th element of the sequence is $z_n = y_{n/2}$ with $n/2 \ge k$, so $|z_n - a| < \varepsilon$ as well.

Chapter 22, pp. 460-465:

1. Prove that

10pt

(iii)
$$\lim (\sqrt[8]{n^2 + 1} - \sqrt[4]{n + 1}) = 0.$$

Solution. First, we have

$$\left|\sqrt{n^2+1}-(n+1)\right| = \left|\frac{n^2+1-(n+1)^2}{\sqrt{n^2+1}+(n+1)}\right| < \frac{2n}{2n+1} < 1$$

for all n. Next,

$$\left| \sqrt[4]{n^2 + 1} - \sqrt{n+1} \right| = \left| \frac{\sqrt{n^2 + 1} - (n+1)}{\sqrt[4]{n^2 + 1} + \sqrt{n+1}} \right| < \left| \frac{1}{\sqrt[4]{n^2 + 1} + \sqrt{n+1}} \right| \longrightarrow 0,$$

so $\sqrt[4]{n^2+1} - \sqrt{n+1} \longrightarrow 0$. Finally,

$$\sqrt[8]{n^2+1} - \sqrt[4]{n+1} = \frac{\sqrt[4]{n^2+1} - \sqrt{n+1}}{\sqrt[8]{n^2+1} + \sqrt[4]{n+1}} \longrightarrow 0.$$

(The numerator tends to 0 and the denominator to ∞ .)

(iv) $\lim (n!/n^n) = 0$. 5pt

Solution. For any even n we have

$$0<\tfrac{n!}{n^n}=\tfrac{1\cdot 2\cdot 3\cdots (n-1)\cdot n}{n\cdot n\cdot n\cdot n\cdot n\cdot n}=\left(\tfrac{1}{n}\cdot \tfrac{2}{n}\cdot \tfrac{3}{n}\cdot \cdots \tfrac{n-1}{n}\cdot \tfrac{n}{n}\right)\leq \tfrac{1}{n}\cdot 1\cdot 1\cdot \cdots 1=\tfrac{1}{n}.$$

Since $\frac{1}{n}^n \longrightarrow 0$, $\lim \frac{n!}{n^n} = 0$ by the squeeze theorem.

(vii) $\lim \sqrt[n]{n^2 + n} = 1$. 5pt

> Solution. For any $n \in \mathbb{N}$ we have $n^2 < n^2 + n < 2n^2$ and so, $\sqrt[n]{n^2} < \sqrt[n]{n^2 + n} < \sqrt[n]{2n^2}$. Now, $\sqrt[n]{n} \longrightarrow 1$ and $\sqrt[n]{2} \longrightarrow 1$, so $\sqrt[n]{n^2} = \left(\sqrt[n]{n}\right)^2 \longrightarrow 1$ and $\sqrt[n]{2n^2} = \sqrt[n]{2}\left(\sqrt[n]{n}\right)^2 \longrightarrow 1$. By the squeeze theorem, $\lim \sqrt[n]{n^2 + n} = 1$.

(viii) For any $a, b \ge 0$, $\lim \sqrt[n]{a^n + b^n} = \max\{a, b\}$. 5pt

> Solution. Without loss of generality, let $a \ge b$. Then for any n, $a = \sqrt[n]{a} \le \sqrt[n]{a^n + b^n} \le \sqrt[n]{a^n + a^n} = a\sqrt[n]{2}$. Since $a\sqrt[n]{2} \longrightarrow a$, by the squeeze theorem, $\lim \sqrt[n]{a^n + b^n} = a$.

2. Find the following limits

(ii)
$$\lim (n - \sqrt{n+a}\sqrt{n+b})$$
.

Solution.

5pt

Solution.
$$n - \sqrt{n+a}\sqrt{n+b} = \frac{n^2 - (n+a)(n+b)}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{(a+b)n}{n + \sqrt{n+a}\sqrt{n+b}} - \frac{ab}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{1 + \sqrt{1+a/n}\sqrt{1+b/n}} - \frac{ab}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{n + \sqrt{n+a}\sqrt{n+b}} - \frac{ab}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{n + \sqrt{n+a}\sqrt{n+b}} - \frac{ab}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{n + \sqrt{n+a}\sqrt{n+b}} - \frac{ab}{n + \sqrt{n+a}\sqrt{n+b}} = -\frac{a+b}{n +$$

(v) $\lim \frac{a^n - b^n}{a^n + b^n}$. 5pt

> Solution. If |a| > |b|, then $\frac{a^n - b^n}{a^n + b^n} = \frac{1 - (b/a)^n}{1 + (b/a)^n} \longrightarrow 1$. If |a| < |b|, then $\frac{a^n - b^n}{a^n + b^n} = \frac{(a/b)^n - 1}{(a/b)^n + 1} \longrightarrow -1$. If a = b, then the limit is 0.

(vii) $\lim \frac{2^{n^2}}{n!}$. 5pt

Solution. For all n, $2^{n^2} = (2^n)^n > n^n$, and $\lim(n!/n^n) = 0$ by 1(iv), so $\lim(n!/2^{n^2}) = 0$ by the squeeze theorem, so $\lim \frac{2^{n^2}}{n!} = \infty$.

5. (a) If 0 < a < 2, prove that $a < \sqrt{2a} < 2$.

Solution. 0 < a < 2 implies that $0 < a^2 < 2a < 4$, so $a < \sqrt{2a} < 2$.

_{5pt} (b) Prove that the sequence $x_1 = \sqrt{2}$, $x_2 = \sqrt{2\sqrt{2}}$, $x_3 = \sqrt{2\sqrt{2\sqrt{2}}}$, ..., converges.

Solution. We have $x_{n+1} = \sqrt{2x_n}$ for all $n \in \mathbb{N}$. Since $0 < x_1 < 2$, by (a) and by induction, $x_n < x_{n+1} < 2$ for all n. Thus (x_n) is a bounded increasing sequence, and so, converges.

 $_{5pt}$ (c) Find $\lim x_n$.

5pt

5pt

Solution. Let $a = \lim x_n$ (it exists by (b)). Then

$$a = \lim x_{n+1} = \lim \sqrt{2x_n} = \sqrt{2a},$$

so $a^2 = 2a$, and since a > 0, a = 2.

(Ok, I used the fact that if $x_n \longrightarrow a$ then $\sqrt{x_n} \longrightarrow \sqrt{a}$. If we don't know it, we can write: $x_{n+1}^2 = 2x_n$ for all n, so, taking the limits of both parts, we get that $a^2 = 2a$, so a = 2.)

6. Let $0 < a_1 < b_1$ and define $a_{n+1} = \sqrt{a_n b_n}$ and $b_{n+1} = \frac{1}{2}(a_n + b_n)$.

(a) Prove that (a_n) increases, (b_n) decreases, and both converge.

Solution. For each n, $b_n > a_n$ by the arithmetic/geometric mean inequality. It follows that, for each n, $a_{n+1} = \frac{1}{2}(a_n + b_n) > \frac{1}{2}(a_n + a_n) = a_n$ and $b_{n+1} = \sqrt{a_n b_n} < \sqrt{b_n b_n} = b_n$, that is, (a_n) is (strictly) increasing and (b_n) is (strictly) decreasing. Also, the sequence (a_n) is bounded above (by b_1), and the sequence (b_n) is bounded below (by a_1). So, they both converge.

(b) Prove that they have the same limit.

Solution. Let $a = \lim a_n$ and $b = \lim b_n$. Then $b = \lim b_{n+1} = \lim \frac{1}{2}(a_n + b_n) = \frac{1}{2}(a + b)$, so a = b.

7(b). Find $1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$, that is: Let $x_1 = 1$ and $x_{n+1} = 1 + \frac{1}{1 + x_n}$, $n \in \mathbb{N}$; prove that the sequence (x_n)

10pt converges and find its limit.

Solution. By induction, $x_n > 0$ and so ≥ 1 for all n. For any n,

$$x_{n+2} - x_{n+1} = \left(1 + \frac{1}{1 + x_{n+1}}\right) - \left(1 + \frac{1}{1 + x_n}\right) = \frac{x_n - x_{n+1}}{(1 + x_{n+1})(1 + x_n)}.$$

Since $x_n, x_{n+1} \ge 1$, we have $0 < \frac{1}{(1+x_{n+1})(1+x_n)} \le \frac{1}{4}$, so $|x_{n+2} - x_{n+1}| \le \frac{1}{4}|x_{n+1} - x_n|$. By a theorm proved in class (or by exercise 22), the sequence (x_n) is Cauchy and so, converges.

Now let $a = \lim_{n \to \infty} x_n$, then $a \ge 1$. We have

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{1 + x_n} \right) = 1 + \frac{1}{1 + \lim_{n \to \infty} x_n} = 1 + \frac{1}{1 + a},$$

so $a + a^2 = 1 + a + 1$, so $a^2 = 2$, and since $a \ge 1$, we get $a = \sqrt{2}$.