Math 4181H

5pt

10pt

5pt

Solutions to Homework 5

A1. Let (x_n) be a sequence in \mathbb{R} . Prove that if (x_n) doesn't diverge to ∞ , then it has at least one limit point. Solution. If (x_n) doesn't diverge to ∞ , then there exists M such that for any k there is $n \geq k$ such that $|x_n| \leq M$. (That is, the set $\{n : |x_n| \leq M\}$ is infinite.) Thus, we can construct a subsequence of (x_n) that is bounded by M: choose n_1 such that $|x_{n_1}| \leq M$, then choose $n_2 > n_1$ such that $|x_{n_2}| \leq M$, etc. Since the sequence (x_{n_i}) is bounded, by the Bolzano-Weierstrass theorem it has a limit point, which is a limit point of (x_n) too.

A2. Let (x_n) be a sequence in \mathbb{R} .

_{5pt} (a) Prove that $\limsup x_n = +\infty$ iff (x_n) is unbounded above.

Solution. The sequence $s_k = \sup\{x_n, n \geq k\}, k = 1, 2, ...$, is decreasing, and $\limsup x_n = \lim s_k$. If $\limsup k = +\infty$ then in particular $s_1 = \sup\{x_n, n \in \mathbb{N}\} = +\infty$, that is, the sequence (x_n) is unbounded above. If (x_n) is bounded above by $M \in \mathbb{R}$, then $s_k \leq M$ for all k, so $\lim s_k \leq M$.

(b) Prove that $\limsup x_n = -\infty$ iff $x_n \longrightarrow -\infty$.

Solution. For every $n, x_n \leq s_n$; so if $\limsup x_n = \lim s_k = -\infty$, then $\lim x_n = -\infty$ by "comparison principle". Conversely, if $x_n \longrightarrow -\infty$, for any $M \in \mathbb{R}$ there is k such that $x_n < M$ for all $n \geq k$, then $s_k \leq M$ and $s_n \leq M$ for all $n \geq k$; thus $\lim s_k = -\infty$.

5pt **A3.** Let (x_n) be a sequence in \mathbb{R} ; prove that (x_n) has limit (finite or infinite) iff $\limsup x_n = \liminf x_n$, in which case $\lim x_n = \limsup x_n$.

Solution. Suppose $a = \lim x_n$ exists. Then for any b > a the set $\{n : x_n > b\}$ is finite, so $\limsup x_n \le a$; and for any b < a the set $\{n : x_n < b\}$ is finite, so $\liminf x_n \ge a$; hence, $\limsup x_n = \liminf x_n = a$.

Conversely, suppose that $a=\limsup x_n=\liminf x_n$. If $a\in\mathbb{R}$, for any $\varepsilon>0$ the sets $\{n:x_n\geq a+\varepsilon\}$ and $\{n:x_n\leq a-\varepsilon\}$ are finite, so $|x_n-a|<\varepsilon$ for all but finitely many n; hence, $a=\lim x_n$. If $a=+\infty$, then for any $M\in\mathbb{R}$ the set $\{n:x_n< M\}$ is finite, so $\lim x_n=+\infty$. If $a=-\infty$, then for any $M\in\mathbb{R}$ the set $\{n:x_n> M\}$ is finite, so $\lim x_n=-\infty$.

A4. Let (x_n) and (y_n) be two sequences in \mathbb{R} and suppose (y_n) converges. Prove that $\limsup (x_n + y_n) = \limsup x_n + \lim y_n$.

Solution. First, assume that $s = \limsup x_n \in \mathbb{R}$. Let $a = \lim y_n$. Let $\varepsilon > 0$; there is k such that for all $n \ge k$, $x_n < s + \varepsilon/2$ and $y_n < a + \varepsilon/2$, and then $x_n + y_n < a + s + \varepsilon$. Also, find m such that $x_n > a - \varepsilon/2$ for all $n \ge m$; then for any k there is $n \ge \max\{k, m\}$ such that $y_n > a - \varepsilon/2$, and then $x_n + y_n > a + s - \varepsilon$. Hence, $a + s = \limsup (x_n + y_n)$.

We have $\limsup x_n = +\infty$ iff (x_n) is unbounded above, then, since (x_n) is bounded, $(x_n + y_n)$ is unbounded above, and $\limsup (x_n + y_n) = +\infty = \limsup x_n + \lim y_n$.

We have $\limsup x_n = -\infty$ iff $(x_n) \longrightarrow -\infty$, in which case $\limsup (x_n + y_n) = \lim (x_n + y_n) = -\infty = \limsup x_n + \lim y_n$.

A5. Let (x_n) be a sequence in \mathbb{R} .

(a) Prove that $\limsup \frac{x_1 + \dots + x_n}{n} \le \limsup x_n$. (Similarly, $\liminf \frac{x_1 + \dots + x_n}{n} \ge \liminf x_n$; don't prove it.)

Solution. Let $b > \limsup x_n$. Find k such that $x_n < b$ for all n > k. Then for any n > k,

$$\frac{x_1 + \dots + x_n}{n} = \frac{x_1 + \dots + x_k}{n} + \frac{x_{k+1} + \dots + x_n}{n} < \frac{x_1 + \dots + x_k}{n} + \frac{b(n-k)}{n} = \frac{x_1 + \dots + x_k - bk}{n} + b.$$

Taking the lim sup of both parts we get that

$$\limsup \frac{x_1 + \dots + x_n}{n} \le \lim \sup \left(\frac{x_1 + \dots + x_k - bk}{n} + b\right) = \lim \left(\frac{x_1 + \dots + x_k - bk}{n} + b\right) = b.$$

Since this is true for all $b > \limsup x_n$, we obtain that $\limsup \frac{x_1 + \dots + x_n}{n} \le \limsup x_n$.

Another solution. Put $a_n = x_1 + \dots + x_n$, $n \in \mathbb{N}$, and $b_n = n$, $n \in \mathbb{N}$. For every n we then have $a_{n+1} - a_n = x_n$ and $b_{n+1} - b_n = 1$. Since the sequence (b_n) is increasing and tends to $+\infty$, Stolz's theorem applies to sequences (a_n) and (b_n) , which says that $\limsup \frac{a_n}{n} \le \limsup \frac{x_n}{n} = \limsup x_n$ (and $\liminf \frac{a_n}{n} \ge \liminf x_n$).

(b) Prove that if $\lim x_n$ exists, then $\lim \frac{x_1 + \dots + x_n}{n}$ also exists and equals $\lim x_n$.

Solution. Let $\lim x_n = a$, then by (a) $a \leq \liminf \frac{x_1 + \dots + x_n}{n} \leq \limsup \frac{x_1 + \dots + x_n}{n} \leq a$, so $\liminf \frac{x_1 + \dots + x_n}{n} = a$. So $\lim \frac{x_1 + \dots + x_n}{n} = a$.

Chapter 5, pp. 108-112:

- 5pt 8. (a) If a finite $\lim_{x\to a} f(x)$ and a finite $\lim_{x\to a} g(x)$ do not exist, can a finite $\lim_{x\to a} (f(x)+g(x))$ exist? Can a finite $\lim_{x\to a} f(x)g(x)$ exist?
 - Solution. Yes for both. For example, take any $a \in \mathbb{R}$ and a function f > 1 for which $\lim_{x \to a} f(x)$ does not exist, and put g = -f, or g = 1/f respectively.
- 5pt (b) If a finite $\lim_{x\to a} f(x)$ and a finite $\lim_{x\to a} (f(x)+g(x))$ exist, must a finite $\lim_{x\to a} g(x)$ exist? Solution. Yes, since g=(f+g)-f.
- 5pt (c) If a finite $\lim_{x\to a} f(x)$ exists and a finite $\lim_{x\to a} g(x)$ does not exist, can a finite $\lim_{x\to a} (f(x)+g(x))$ exist? Solution. No, by (b).
- (d) If finite $\lim_{x\to a} f(x)$ and finite $\lim_{x\to a} f(x)g(x)$ exist, does it follow that $\lim_{x\to a} g(x)$ exists? Solution. No. Take any function g for which this limit does not exist and put f=0.
- 5pt 9. Prove that $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$ (that is, one limit exists iff the other exists, and they are equal). Only consider the case of finite limits.

Solution. Let $\mathrm{Dom}(f) = A$. Let $\lim_{x\to a} f(x) = b$, and let $\varepsilon > 0$. Then there exists $\delta > 0$ such that for any $x \in A \setminus \{a\}$ with $|x-a| < \delta$ one has $|f(x)-b| < \varepsilon$. Then for any $h \in A-a$ with $0 < |h| < \delta$ we have $|(a+h)-a| < \delta$, so $|f(a+h)-b| < \varepsilon$. This means that $\lim_{h\to 0} f(a+h) = b$.

Conversely, assume that $\lim_{h\to 0} f(a+h) = b$. Let $\varepsilon > 0$. Find $\delta > 0$ such that for any $h \in A - a$ with $0 < |h| < \delta$ one has $|f(a+h) - b| < \varepsilon$. Then for any $x \in A$ such that $0 < |x-a| < \delta$, we have $|f(x) - b| = (f(a + (x - a)) - b) < \varepsilon$, which proves that $\lim_{x\to a} f(x) = b$.

Another solution. The function g(h) = f(a+h) is the composition of two functions: $\varphi(h) = a+h$, $h \in \text{Dom}(f)-a$, and f, so the theorem about the limit of the composition could be used. We have $\lim_{h\to 0} \varphi(h) = a$, so, if $\lim_{x\to a} f(x)$ exists, $\lim_{h\to 0} f(a+h) = \lim_{h\to 0} f(\varphi(h)) = \lim_{x\to a} f(x)$.

Conversely, f is the composition of $\psi(x) = x - a$ and g, f(x) = g(a - h), so if $\lim_{h\to 0} f(a + h) = \lim_{h\to 0} g(h)$ exists, then $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a + h)$.

- _{5pt} **14(a).** Prove that if $\lim_{x\to 0} f(x)/x = l \in \mathbb{R}$ and $b \neq 0$, then $\lim_{x\to 0} f(bx)/x = bl$.
 - Solution. Given any $\varepsilon > 0$, find $\delta > 0$ such that $\left| \frac{f(x)}{x} l \right| < \frac{\varepsilon}{|b|}$ for all $x \in \mathbb{R} \setminus \{0\}$ such that $|x| < \delta$, then for any $x \in \mathbb{R} \setminus \{0\}$ such that $|x| < \delta/|b|$ we have $bx \neq 0$ and $|bx| < \delta$, so $\left| \frac{f(bx)}{bx} l \right| < \frac{\varepsilon}{|b|}$, so $\left| \frac{f(bx)}{x} bl \right| < \varepsilon$.
 - Another solution. The function f(bx)/(bx) is the composition of two functions: $x \mapsto bx$ and g(y) = f(y)/y. We have $\lim_{x\to 0} (bx) = b \lim_{x\to 0} x = 0$ and $bx \neq 0$ for all $x \neq 0$, so by the theorem about the limit of a composition, $\lim_{x\to 0} f(bx)/(bx) = \lim_{y\to 0} f(y)/y = l$. So, $\lim_{x\to 0} f(bx)/x = b \lim_{x\to 0} f(bx)/(bx) = bl$.
- 34. Prove that $\lim_{x\to 0^+} f(1/x) = \lim_{x\to +\infty} f(x)$ (that is, one limit exists iff the other exists, and they are equal). Only consider the case of finite limits.

Solution. Assume that $\lim_{x\to 0^+} f(1/x) = b \in \mathbb{R}$. Let $\varepsilon > 0$. Find $\delta > 0$ such that $|f(1/x) - b| < \varepsilon$ when $0 < x < \delta$ and $1/x \in \mathrm{Dom}(f)$. Then for any $y \in \mathrm{Dom}(f)$ with $y > 1/\delta$ we have $0 < 1/y < \delta$, so $|f(1/(1/y)) - b| < \varepsilon$, so $|f(y) - b| < \varepsilon$. Hence, $\lim_{y\to +\infty} f(y) = b$.

In the other direction: Assume that $\lim_{x\to +\infty} f(x)=b$. Let $\varepsilon>0$. Find M>0 such that $|f(x)-b|<\varepsilon$ for all $x\in \mathrm{Dom}(f)$ with x>M. Then for any $y\in \mathrm{Dom}(f)$ with 0< y<1/M we have 1/y>M, so $|f(1/y)-b|<\varepsilon$. Hence, $\lim_{y\to 0^+} f(1/y)=b$.

Another solution. f(1/x) is the composition of two functions: $x \mapsto 1/x$ and f(y). We have $\lim_{x\to 0^+} 1/x = +\infty$ and $\lim_{x\to +\infty} 1/x = 0^+$ (that is, $\lim = 0$ and 1/x > 0 for all x in a nbhd of $+\infty$), so, by the theorem about the limit of the composition, if $\lim_{y\to +\infty} f(y)$ exists, then $\lim_{x\to 0^+} f(1/x) = \lim_{y\to +\infty} f(y)$, and if $\lim_{y\to 0^+} f(1/y)$ exists, then $\lim_{x\to +\infty} f(x) = \lim_{y\to 0^+} f(1/y)$.