Math 4181H

Solutions to Homework 6

Chapter 8, p. 140:

- **6.** Let $B \subseteq \mathbb{R}$ and let A be a dense subset of B.
- 5pt (b) Prove that if f and g are continuous on B and f(x) = g(x) for all $x \in A$, then f = g on B (that is, f(x) = g(x) for all $x \in B$).

Solution. Let $a \in B$; there is a sequence (x_n) in A such that $x_n \longrightarrow a$, then $f(x_n) = g(x_n)$ for all n, so $f(a) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(a)$.

5pt (c) Prove that if f and g are continuous on B and $f(x) \ge g(x)$ for all $x \in A$, then $f \ge g$ on B (that is, $f(x) \ge g(x)$ for all $x \in B$). Can " \ge " be replaced by ">"?

Solution. Assume that f(x) < g(x) at some points x, then f(y) < g(y) for all y in some neighborhood of x; but this neighborhood contains points of A, contradiction. " \geq " cannot be replaced by ">", as the following example shows: let $B = \mathbb{R}$, $A = \mathbb{R} \setminus \{0\}$, f(x) = |x| and g(x) = 0, $x \in \mathbb{R}$; then f(x) > g(x) for all $x \in A$, but f(0) = g(0).

Another solution. Let $x \in B$; there is a sequence (x_n) in A such that $x_n \longrightarrow x$, then $f(x_n) \ge g(x_n)$ for every n and $f(x) = \lim_{n \to \infty} f(x_n) \ge \lim_{n \to \infty} g(x_n) = g(x)$.

Chapter 6, pp. 120-121:

 $_{\mathrm{5pt}}$ 4. Give an example of a function $f:\mathbb{R}\longrightarrow\mathbb{R}$ that is continuous nowhere, but |f| is continuous everywhere.

Solution. $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \notin \mathbb{Q} \end{cases}$. For every $a \in \mathbb{R}$, the limit $\lim_{x \to a} f(x)$ does not exist, thus f is (of second kind) discontinuous at every point. However, |f| = 1, so |f| is continuous at all points.

5. For each point $a \in \mathbb{R}$ find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ which is continuous at a but is discontinuous at all other points of \mathbb{R} .

Solution. For a=0 this is the function $f(x)=\begin{cases} x, & x\in\mathbb{Q}\\ 0, & x\notin\mathbb{Q} \end{cases}$. (Indeed, since $|f(x)|\leq |x|$ for all x, $\lim_{x\to 0}f(x)=0$; for any $c\neq 0$, $\lim_{n\to\infty}f(x_n)=0\neq f(c)$ for any sequence (x_n) of irrational points that tends to c.) For any other a, the function $f_a(x)=f(x-a)$ works.

6. (b) Find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is discontinuous at $0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ but continuous at all other points.

Solution. Put f(x) = 1 if $x \in \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$ and f(x) = 0 otherwise. Then f is discontinuous at all points of the form $\frac{1}{n}$, $n \in \mathbb{N}$, since for every $n \in \mathbb{N}$, $f(1/n) \neq 0$ and in every neighborhood of 1/n there are irrational points where f takes value 0. f is continuous at every other point $a \neq 0$ since a has a neighborhood where f is identically 0. At 0, f is discontinuous since f(0) = 0 but any neighborhood of 0 contains points where f is equal to 1.

_{5pt} (a) Find a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is discontinuous at $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ but continuous at all other points.

Solution. Put f(x)=x if $x\in\left\{\frac{1}{n},\ n\in\mathbb{N}\right\}$ and f(x)=0 otherwise. Then f is discontinuous at all points of the form $\frac{1}{n},\ n\in\mathbb{N}$, since for every $n\in\mathbb{N},\ f(1/n)\neq 0$ and in every neighborhood of 1/n there are irrational points where f takes value 0. At all other points f is continuous: if $a\neq 1/n$ for all n and $a\neq 0$, then a has a neighborhood where f is identically zero; if a=0 then for any $\varepsilon>0,\ |f(x)|\leq \varepsilon$ in the ε -neighborhood of a.

Chapter 7, pp. 130-132:

5pt 10. Suppose f and g are continuous on [a,b], f(a) < g(a), and f(b) > g(b). Prove that f(x) = g(x) for some $x \in [a,b]$.

Solution. The function h = f - g is continuous on [a, b] with h(a) < 0 and h(b) > 0, so by the I.V.T., h(x) = 0 for some $x \in (a, b)$.

8. Suppose that f and g are continuous on an interval I, that $f^2 = g^2$, and that $f(x) \neq 0$ for all x. Prove that either f = g or f = -g.

Solution. Consider the function h = g/f; it is defined and continuous since $f(x) \neq 0$ for all x. For every $x \in I$ we have $h^2(x) = g^2(x)/f^2(x) = 1$, so either h(x) = 1 or h(x) = -1. But if there is a point $a \in I$ such that h(a) = 1 and a point $b \in I$ such that h(b) = -1, then by the I.V.T. there is $x \in (a, b)$ (or $x \in (b, a)$) such that h(x) = 0, so g(x) = 0, so f(x) = 0, contradiction. Hence, either h(x) = 1 for all x, in which case f = g, or h(x) = -1 for all x, in which case f = -g.

16. (a) Suppose that f is continuous on (a,b) and $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x) = +\infty$. Prove that f has a minimum on all of (a,b).

Solution. Take any $c \in (a, b)$ and let f(c) = z. Since $\lim_{x \to a^+} f(x) = +\infty$, there exists $\delta_1 > 0$ such that f(x) > z for all $x \in (a, a + \delta_1)$. Since $\lim_{x \to b^-} f(x) = +\infty$, there exists $\delta_2 > 0$ such that f(x) > z for all $x \in (b - \delta_2, b)$. $f(x) = +\infty$ is continuous on the closed bounded interval $I = [a + \delta_1, b - \delta_2]$, thus it attains its minimal value on this interval at some point $p \in I$, so that $f(p) \le f(x)$ for all $x \in I$. Also, for any $x \in [a, b] \setminus I$, $f(x) > z = f(c) \ge f(p)$. So, f(p) is the minimal value of f(x) = x on the whole interval f(x) = x.

5pt 18. Suppose f is a continuous function on \mathbb{R} with f(x) > 0 for all x, and $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$. Prove that f attains its maximal value in \mathbb{R} .

Solution. This problem can be reduced to problem 16 by considering the funcion g(x) = 1/f(x). I'll however repeat the proof: Take any $c \in \mathbb{R}$, find M such that 0 < f(x) < f(c) for all x with |x| > M, find a point $y \in [-M, M]$ where f attains its maximal value on [-M, M], then this values is maximal for f on whole \mathbb{R} since $f(y) \ge f(c) > f(x)$ for all $x \notin [-M, M]$.

Chapter 8, Appendix, p. 146:

 $_{5pt}$ 2. (a) If f and g are uniformly continuous on A, then so is f + g.

Solution. Let $\varepsilon > 0$. Find $\delta_1 > 0$ such that $|f(x) - f(y)| < \varepsilon/2$ for any $x, y \in A$ with $|x - y| < \delta_1$, and $\delta_2 > 0$ such that $|g(x) - g(y)| < \varepsilon/2$ for any $x, y \in A$ with $|x - y| < \delta_2$. Put $\delta = \min(\delta_1, \delta_2)$. Then for any $x, y \in A$ with $|x - y| < \delta$ we have

$$\left| (f+g)(x) - (f+g)(y) \right| \le |f(x) - f(y)| + |g(x) - g(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

 $_{\mathrm{5pt}}$ (b) If f and g are uniformly continuous and bounded on A, then fg is unformly continuous on A.

Solution. Let $M \in \mathbb{R}$ be such that |f(x)|, |g(x)| < M for all $x \in A$. Let $\varepsilon > 0$. Find $\delta_1 > 0$ such that $|f(x) - f(y)| < \varepsilon/(2M)$ for any $x, y \in A$ with $|x - y| < \delta_1$, and $\delta_2 > 0$ such that $|g(x) - g(y)| < \varepsilon/(2M)$ for any $x, y \in A$ with $|x - y| < \delta_2$. Put $\delta = \min(\delta_1, \delta_2)$. Then for any $x, y \in A$ with $|x - y| < \delta$ we have

$$\left| (fg)(x) - (fg)(y) \right| = \left| f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y) \right| \le |f(x)| \cdot |g(x) - g(y)| + |f(x) - f(y)| \cdot |g(y)|$$

$$< M\varepsilon/(2M) + \varepsilon M/(2M) = \varepsilon.$$

 $_{\mathrm{5pt}}$ (c) Show that the conclusion of (b) fails if one of f, g is unbounded.

Solution. Let $f(x) = x, x \in \mathbb{R}$, and g(x) be "the distance to the nearest integer" function: $g(x) = \begin{cases} t \text{ for } x = n+t, \ n \in \mathbb{Z}, \ t \in [0, \frac{1}{2}] \\ 1-t \text{ for } x = n+t, \ n \in \mathbb{Z}, \ t \in [\frac{1}{2}, 1]. \end{cases}$ (The function $g(x) = \sin x$ would also do the work.) Both functions are uniformly continuous on \mathbb{R} , and g is bounded. But fg is not uniformly continuous on \mathbb{R} . Indeed, take $\varepsilon = 1$. For $n \in \mathbb{N}$, put $x_n = n$ and $y_n = n + \frac{1}{n}$. Then, for $n \geq 2$,

$$f(y_n)g(y_n) - f(x_n)g(x_n) = \left(n + \frac{1}{n}\right)\frac{1}{n} - n0 = 1 + \frac{1}{n^2} > \varepsilon.$$

Now, given any $\delta > 0$, we can find $n \in \mathbb{N}$ such that $\frac{1}{n} < \delta$; then $|y_n - x_n| < \delta$, but $|f(y_n) - f(x_n)| > \varepsilon$.

5pt (d) Suppose that f is uniformly continuous on A, g is uniformly continuous on B, and $f(A) \subseteq B$. Prove that $g \circ f$ is uniformly continuous on A.

Solution. Let $\varepsilon > 0$. Find $\tau > 0$ such that $|g(u) - g(v)| < \varepsilon$ whenever $u, v \in B$, $|u - v| < \tau$. Find $\delta > 0$ such that $|f(x) - f(y)| < \tau$ whenever $x, y \in A$, $|x - y| < \delta$. Then for any $x, y \in A$ with $|x - y| < \delta$ we have $f(x), f(y) \in B$, $|f(x) - f(y)| < \tau$, so $|g(f(x)) - g(f(y))| < \varepsilon$. This proves that $g \circ f$ is uniformly continuous on A.