Math 4181H

Solutions to Homework 7

Chapter 9, pp. 163-166:

19(a). Suppose that f, g and h are defined in a neighborhood of a, f and h are differentiable at a, f(a) = h(a), f'(a) = h'(a), and $f(x) \le g(x) \le h(x)$ or $h(x) \le g(x) \le f(x)$ for all x in a neighborhood of a. Prove that g is differentiable at a with g'(a) = f'(a).

Solution. Let b = f(a) = h(a), then also g(a) = b. For any x in a neighborhood I of a we have $f(x) - b \le g(x) - b \le h(x) - b$ or $h(x) - b \le g(x) - b \le f(x) - b$. Thus for any $x \in I \setminus \{a\}$

either
$$\frac{f(x)-b}{x-a} \le \frac{g(x)-b}{x-a} \le \frac{h(x)-b}{x-a}$$
 or $\frac{h(x)-b}{x-a} \le \frac{g(x)-b}{x-a} \le \frac{f(x)-b}{x-a}$.

Since $\lim_{x\to a} \frac{f(x)-b}{x-a} = f'(a) = h'(a) = \lim_{x\to a} \frac{h(x)-b}{x-a}$, by the squeeze theorem $g'(a) = \lim_{x\to a} \frac{g(x)-c}{x-a}$ exists and equals f'(a).

22. (a) Suppose f is differentiable at a. Prove that $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$.

Solution. For any h we have

5pt

$$\frac{f(a+h) - f(a-h)}{2h} = \frac{1}{2} \left(\frac{f(a+h) - f(a)}{h} + \frac{f(a) - f(a-h)}{h} \right) = \frac{1}{2} \left(\frac{f(a+h) - f(a)}{h} + \frac{f(a-h) - f(a)}{-h} \right).$$

Since $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} \frac{f(a-h)-f(a)}{-h} = f'(a)$, $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h} = \frac{1}{2}(f'(a)+f'(a)) = f'(a)$. (The function $\varphi(h) = \frac{f(a-h)-f(a)}{-h}$ is the composition of the functions $h \mapsto -h$ and $\frac{f(a+h)-f(a)}{h}$; since $-h \to 0$ as $h \to 0$, by the theorem on the limit of composition, $\lim_{h\to 0} \frac{f(a-h)-f(a)}{-h} = f'(a)$ as well.)

5pt (b) Give an example of a function for which the limit in (a) exists and is finite, but which is not differentiable at a.

Solution. The function f(x) = |x| is such: $\frac{f(0+h)-f(0-h)}{2h} = 0$ for all $h \neq 0$, so $\lim_{h\to 0} \frac{f(0+h)-f(0-h)}{2h} = 0$, but f is not differentiable at 0.

23-24. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable on \mathbb{R} . If f is even, prove that f' is odd, and if f is odd, prove that f' is even.

Solution. Let f be even. Define g(x) = f(-x), $x \in \mathbb{R}$. Then g = f, so, g'(x) = f'(x) for all x. On the other hand, g is the composition of the function $x \mapsto -x$ and of f, so, by the chain rule (the theorem about the derivative of the composition), for any x, g'(x) = f'(-x)(-1) = -f'(-x). Hence, for any x, f'(x) = -f'(-x), that is, f' is an odd function.

Let f be odd. Define g(x) = f(-x), $x \in \mathbb{R}$. Then g = -f, so, g'(x) = -f'(x) for all x. On the other hand, g is the composition of the function $x \mapsto -x$ and of f, so, by the chain rule, for any x, g'(x) = f'(-x)(-1) = -f'(-x). Hence, for any x, -f'(x) = -f'(-x), so f'(x) = f'(-x), that is, f' is an even function.

Chapter 10, pp. 181-187:

5pt 16. (a) If f is differentiable at a and $f(a) \neq 0$, prove that |f| is also differentiable at a.

Solution. W.l.o.g. assume that f(a) > 0. Since f is differentiable at a, f is continuous at a, so f(x) > 0 for all x in a neighborhood of a, so |f(x)| = f(x) for all x in this neighborhood, so $|f|'(a) = \lim_{x \to a} \frac{|f(x)| - |f(a)|}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$.

 $_{5\mathrm{pt}}$ (b) Give a counterexample if f(a)=0.

Solution. The function f(x) = x is differentiable at 0 whereas |f(x)| = |x| is not.

_{5pt} (c) If f and g are differentiable at a and $f(a) \neq g(a)$, prove that $\max\{f,g\}$ is differentiable at a.

Solution. If f(a) = g(a), then $(f - g)(a) \neq 0$, so, by (a), |f - g| is differentiable at a, so $\max\{f, g\} = \frac{1}{2}(f + g + |f - g|)$ is differentiable at a.

29. Suppose f is differentiable at 0 and that f(0) = 0. Prove that f(x) = xg(x) for some function g which is continuous at 0.

Solution. Define g(x) = f(x)/x for $x \neq 0$ and g(0) = f'(0), then, since f(0) = 0, we have f(x) = xg(x) for all x. The function g(x) = f(x)/x is continuous on $Dom(f) \setminus \{0\}$; since

$$g(0) = f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} g(x),$$

g is continuous at 0 as well.

Chapter 11, pp. 206-211:

10pt 11. Among all circular cylinders of volume V find the one with the smallest surface area.

Solution. Given V>0, define the function $S(r)=2\pi rV/(\pi r^2)+2\pi r^2=2V/r+2\pi r^2$, r>0, then S(r) is the surface area of the cylinder of volume V and base radius r. Since S is continuous and $S(r) \to +\infty$ as $r \to 0^+$ or $r \to +\infty$, S attains its minimum value at some point $r_0 \in (0,+\infty)$, which must be a critical point for S. We have $S'(r)=-2V/r^2+4\pi r$, so S'(r)=0 iff $4\pi r=2V/r^2$ iff $r^3=V/(2\pi)$ iff $r=\sqrt[3]{V/(2\pi)}$. So, the cylinder of the smallest surface area is the one with $r=\sqrt[3]{V/(2\pi)}$ and $h=V/(\pi r^2)=V/(\pi\sqrt[3]{V^2/(4\pi^2)})=\sqrt[3]{4V/\pi}=2\sqrt[3]{V/(2\pi)}=2r$.

A1. (a) Prove that if f is convex on an open interval I and g is increasing and convex on f(I), then $g \circ f$ is convex on I.

Solution. First of all, f is continuous on I and f(I) is therefore an interval too. Let $x, z \in I$, $t \in [0,1]$. Since f is convex, $f(tx + (1-t)z) \le tf(x) + (1-t)f(z)$. Since g is increasing, this implies $g(f(tx + (1-t)z)) \le g(tf(x) + (1-t)f(z))$. And as g is convex, $g(tf(x) + (1-t)f(z)) \le tg(f(x)) + (1-t)g(f(z))$. Hence, $g(f(tx + (1-t)z)) \le tg(f(x)) + (1-t)g(f(z))$, so $g \circ f$ is convex.

(b) Let f be a convex function on an open interval I. Prove that if f is strictly decreasing on I, then its inverse f^{-1} is also convex on f(I), and if f is strictly increasing on I, then f^{-1} is concave on f(I).

Solution. Let f be convex and strictly monotone on I, then f is invertible, continuous on I, and J = f(I) is also an open interval.

Let $u, v \in J$ and $t \in [0, 1]$, let $x = f^{-1}(u)$ and $z = f^{-1}(v)$. If f be strictly decreasing on I, then $f(tx + (1-t)z) \le tf(x) + (1-t)f(z) = tu + (1-t)v$. Since f^{-1} is strictly decreasing, this implies that $tx + (1-t)z = f^{-1}(f(tx+(1-t)z)) \ge f^{-1}(tu+(1-t)v)$, that is, $tf^{-1}(u) + (1-t)f^{-1}(v) \ge f^{-1}(tu+(1-t)v)$. Hence, f^{-1} is convex on J.

If f is strictly increasing on I, then for $u, v \in J$ and $t \in [0,1]$ we have $tf^{-1}(u) + (1-t)f^{-1}(v) \le f^{-1}(tu + (1-t)v)$, that is, f^{-1} is conveave on J.

Chapter 11, Appendix, p. 228:

10pt

8. Prove Jensen's inequality: If f is a convex function on an interval I and p_1, \ldots, p_n are positive numbers such that $\sum_{i=1}^n p_i = 1$, prove that for any $x_1, \ldots, x_n \in I$, $f(\sum_{i=1}^n p_i x_i) \leq \sum_{i=1}^n p_i f(x_i)$.

Solution. I'll use induction on n; for n=2 the statement it true. Given $p_1, \ldots, p_{n+1} > 0$ with $\sum_{i=1}^{n+1} p_i = 1$, define $p = \sum_{i=1}^{n} p_i$ and $q_i = p_i/p$, $i = 1, \ldots, n$, then $q_i > 0$ for all i and $\sum_{i=1}^{n} q_i = \sum_{i=1}^{n} p_i/p = 1$, so we may assume by induction that

$$f\left(\sum_{i=1}^{n} q_i x_i\right) \le \sum_{i=1}^{n} q_i f(x_i).$$

Further, $p, p_{n+1} > 0$ and $p + p_{n+1} = 1$, so for $x = \sum_{i=1}^{n} q_i x_i$ we have

$$f(px + p_{n+1}x_{n+1}) \le pf(x) + p_{n+1}f(x_{n+1}) \le p\sum_{i=1}^{n+1} q_i f(x_i) + p_{n+1}f(x_{n+1}) = \sum_{i=1}^{n+1} p_i f(x_i).$$

Since $px + p_{n+1}x_{n+1} = \sum_{i=1}^{n+1} p_i x_i$, we have the induction step.

A2. By A1, the (strictly increasing) function \log_2 is (strictly) concave. Use this fact and the preceding problem to prove the general arithmetic-geometric mean inequality: for any n and positive x_1, \ldots, x_n , $\frac{x_1 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 \cdots x_n}$.

Solution. Since \log_2 is a concave function on $(0,+\infty)$, for any n and $x_1,\ldots,x_n>0$ we have

$$\log(\frac{1}{n}\sum_{i=1}^{n}x_i) \ge \frac{1}{n}\sum_{i=1}^{n}\log_2 x_i = \frac{1}{n}\log_2 \prod_{i=1}^{n}x_i = \log_2 \left(\prod_{i=1}^{n}x_i\right)^{1/n}.$$

Since \log_2 is increasing, this implies that $\frac{1}{n}\sum_{i=1}^n x_i \ge \left(\prod_{i=1}^n x_i\right)^{1/n} = \sqrt[n]{\prod_{i=1}^n x_i}$.