Math 4181H

Solutions to Homework 8

A3. Using the definition (and not using the Fundamental Theorem of Calculus), prove that $\int_0^1 x^2 = 1/3$. Solution. Since x^2 is a continuous function, it is integrable. For any $n \in \mathbb{N}$ consider the partition $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\}$ of [0, 1]. We then have

$$U(x^{2}, P_{n}) = \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{2} \cdot \frac{1}{n} = \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} = \frac{1}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6},$$

which tends to $\frac{1}{3}$ as $n \to \infty$. Since $\operatorname{mesh}(P_n) \to 0$ as $n \to \infty$, $\int_0^1 x^2 = \lim_{n \to \infty} U(x^2, P_n) = \frac{1}{3}$. Chapter 13, pp. 275-281:

4. Let $d \in \mathbb{N}$ and 0 < a < b, put $f(x) = x^d$. Find $\int_a^b f$ in the following way: Put c = b/a.

5pt (a) For each $n \in \mathbb{N}$, put $t_i = ac^{i/n}$, i = 0, 1, ..., n, and let $P_n = \{t_0, ..., t_n\}$. Prove that $\operatorname{mesh}(P_n) \longrightarrow 0$ as $n \longrightarrow \infty$.

Solution. For each i, $\Delta t_i = t_i - t_{i-1} = ac^{i/n} - ac^{(i-1)/n} = ac^{(i-1)/n}(c^{1/n} - 1) < ac(c^{1/n} - 1)$. Since $c^{1/n} \longrightarrow 1$ as $n \longrightarrow \infty$, $ac(c^{1/n} - 1) \longrightarrow 0$, so $\text{mesh}(P_n) = \max\{\Delta t_i, i = 1, \dots, n\} \longrightarrow 0$.

10pt (b) Find $U(f, P_n)$. (That is, try to write $U(f, P_n)$ in a compact form that will help you in (c) below.)

Solution. Since f is increasing, the maximum of f on each interval $[t_{i-1}, t_i]$ is reached at the point t_i . So,

$$\begin{split} &U(f,P_n) = \sum_{i=1}^n t_i^d \Delta t_i = \sum_{i=1}^n a^d c^{id/n} a c^{i/n} (1-c^{-1/n}) = a^{d+1} (1-c^{-1/n}) \sum_{i=1}^n (c^{(d+1)/n})^i \\ &= a^{d+1} (1-c^{-1/n}) c^{(d+1)/n} \frac{c^{d+1}-1}{c^{(d+1)/n}-1} = a^{d+1} (c^{d+1}-1) c^{(d+1)/n} \frac{1-c^{-1/n}}{c^{(d+1)/n}-1} = (b^{d+1}-a^{d+1}) c^{d/n} \frac{c^{1/n}-1}{c^{(d+1)/n}-1}. \end{split}$$

_{5pt} (c) Conclude that $\int_a^b x^d dx = \frac{1}{d+1}(b^{d+1} - a^{d+1})$.

Solution. Since f is continuous, it is integrable. As $n \to \infty$ we have $c^{1/n} \to 1$, so $c^{i/n} \to 1$ for each $i = 1, \ldots, d$. So, $c^{d/n} \longrightarrow 1$ and

$$\frac{c^{1/n}-1}{c^{(d+1)/n}-1} = \frac{c^{1/n}-1}{(c^{1/n})^{d+1}-1} = \frac{1}{1+c^{1/n}+\ldots+c^{d/n}} \longrightarrow \frac{1}{d+1}.$$

Hence, $U(f, P_n) \longrightarrow \frac{1}{d+1}(b^{d+1} - a^{d+1})$. So, $\int_a^b f(x) dx = \frac{1}{d+1}(b^{d+1} - a^{d+1})$.

21. Let f be strictly increasing and continuous on [c,d], let a=f(c) and b=f(d).

(a) If $P = \{t_0, \dots, t_n\}$ is a partition of [a, b], let $P' = \{f^{-1}(t_0), \dots, f^{-1}(t_n)\}$. Prove that $L(f^{-1}, P) + U(f, P') = bd - ac$.

Solution. For each i, let $x_i = f^{-1}(t_i)$. Since f and f^{-1} are increasing,

$$L(f^{-1}, P) = \sum_{i=1}^{n} f^{-1}(t_{i-1})(t_i - t_{i-1}) = \sum_{i=1}^{n} x_{i-1}t_i - \sum_{i=1}^{n} x_{i-1}t_{i-1}$$

and

$$U(f, P') = \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} t_i x_i - \sum_{i=1}^{n} t_i x_{i-1}.$$

Adding these two equalities, we get

$$L(f^{-1}, P) + U(f, P') = -\sum_{i=1}^{n} x_{i-1}t_{i-1} + \sum_{i=1}^{n} t_i x_i = -x_0 t_0 + x_n t_n = -ac + bd.$$

to (b) Prove that $\int_a^b f^{-1}(y)dy = bd - ac - \int_c^d f(x) dx$.

Solution. Since f and f^{-1} are monotone, they are integrable. By (a),

$$\begin{split} \int_a^b f^{-1} &= L(f^{-1}) = \sup \big\{ L(f^{-1},P) : P \text{ is a partition of } [a,b] \big\} \\ &= \sup \big\{ bd - ac - U(f,P') : P' \text{ is a partition of } [c,d] \big\} \\ &= bd - ac - \inf \big\{ U(f,P') : P' \text{ is a partition of } [c,d] \big\} = bd - ac - U(f) = bd - ac - \int_c^d f. \end{split}$$

_{5pt} (c) Find $\int_a^b \sqrt[n]{x} dx$ for $0 \le a < b$ (without using the F.T.C.) Solution. By (b), applied to the function $f(x) = x^n$,

$$\int_a^b \sqrt[n]{x} \, dx = b \sqrt[n]{b} - a \sqrt[n]{a} - \int_{\sqrt[n]{a}}^{\sqrt[n]{b}} x^n dx = b^{1+1/n} - a^{1+1/n} - \frac{1}{n+1} \left((\sqrt[n]{b})^{n+1} - (\sqrt[n]{a})^{n+1} \right) = \frac{n}{n+1} (b^{1+1/n} - a^{1+1/n}).$$

31. Let f be integrable on [a, b].

_{5pt} (a) Give an example where $f \ge 0$, f(x) > 0 for some $x \in [a, b]$, but $\int_a^b f(x) dx = 0$.

Solution. $[a, b] = [-1, 1], f(x) = 0 \text{ if } x \neq 0 \text{ and } f(0) = 1.$

10pt (b) Suppose that $f \ge 0$, f is continuous at $x_0 \in [a,b]$ and $f(x_0) > 0$. Prove that $\int_a^b f(x) dx > 0$.

Solution. Let us assume that $x_0 \in (a, b)$; the cases $x_0 = a$ and $x_0 = b$ are similar. Let $f(x_0) = c > 0$. Find $\delta > 0$ such that $a < x_0 - \delta$, $x_0 + \delta < b$, and f(x) > c/2 for $x \in (x_0 - \delta, x_0 + \delta)$. Then

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0} - \delta} f(x) dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx + \int_{x_{0} + \delta}^{b} f(x) dx,$$

 $\int_{a}^{x_{0}-\delta}f(x)\,dx\geq0,\,\int_{x_{0}+\delta}^{b}f(x)\,dx\geq0,\,\text{and}\,\,\int_{x_{0}-\delta}^{x_{0}+\delta}f(x)\,dx\geq(c/2)2\delta>0.\,\,\text{So},\,\int_{a}^{b}f(x)\,dx>0.$

Chapter 14, pp. 296-302:

1. Find the derivatives of the following functions:

_{5pt} (i) $F(x) = \int_0^{x^3} \sin^3 t \, dt$.

Solution. $F(x) = G(x^3)$ where G is the integral, and so, by the F.T.C., the primitive function of $\sin^3 x$. So, $F'(x) = G'(x^3) \cdot 3x^2 = \sin^3(x^3) \cdot 3x^2$.

pt (ii) $F(x) = \int_3^{\int_1^x \sin^3 t dt} \frac{dt}{1 + \sin^6 t + t^2}$.

Solution. $F(x) = G(\varphi(x))$ where G is a primitive of $\frac{1}{1+\sin^6t+t^2}$ and $\varphi(x) = \int_1^x \sin^3t dt$. So, $F'(x) = G'(\varphi(x))\varphi'(x) = \frac{1}{1+\sin^6(\varphi(x))+\varphi(x)^2}\sin^3x$. (If needed, φ can be computed to be $\varphi(x) = \frac{1}{3}\cos^3x - \cos x - \frac{1}{3}\cos^31 + \cos 1$.)

9. Prove that if f is continuous on \mathbb{R} , then $\int_0^x f(u)(x-u) du = \int_0^x \left(\int_0^u f(t) dt \right) du$. Solution. Let $G(x) = \int_0^x f(u)(x-u) du$, $x \in \mathbb{R}$, then $G(x) = x \int_0^x f(u) du - \int_0^x f(u) u du$, so, by the F.T.C.,

$$G'(x) = \int_0^x f(u) \, du + x f(x) - f(x) x = \int_0^x f(u) \, du.$$

So, G is a primitive of the (continuous) function $F(x) = \int_0^x f(t) dt$, and since G(0) = 0, by the F.T.C. we have $G(x) = \int_0^x F(u) du = \int_0^x \left(\int_0^u f(t) dt \right) du$.

Another solution. Let $F(u) = \int_0^u f(t) dt$, since f is continuous, F' = f. Integrating by parts, we have $\int_0^x f(u)(x-u) du = \int_0^x (x-u) dF(u) = (x-u)F(u)\Big|_0^x + \int_0^x F(u) du = \int_0^x \left(\int_0^u f(t) dt\right) du$.

21. Suppose that f' is integrable on [0,1] and f(0)=0. Prove that for all $x \in (0,1]$ we have $|f(x)| \leq \sqrt{\int_0^x |f'|^2 dt}$.

Solution. By the F.T.C., for any $x \in (0,1]$ we have $f(x) = \int_0^x f'(t) dt$, and by the Cauchy-Schwarz inequality,

$$\left| \int_0^x f'(t) \, dt \right| = \left| \int_0^x f'(t) \cdot 1 \, dt \right| \le \sqrt{\int_0^x f'(t)^2 \, dt} \cdot \sqrt{\int_0^x 1^2 \, dt} = \sqrt{\int_0^x f'(t)^2 \, dt} \cdot \sqrt{x} \le \sqrt{\int_0^x f'(t)^2 \, dt}.$$