Math 4181H

Solutions to Homework 9

10pt

A1. Let $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0. Prove that f is infinitely differentiable on \mathbb{R} with $f^{(n)}(0) = 0$ for all n.

Solution. First, let's prove that for any polynomial p, $\lim_{x\to 0} e^{-1/x^2} p(1/x) = 0$. It suffices to prove that $\lim_{x\to 0} e^{-1/x^2} (1/x)^n = 0$ for all $n \in \mathbb{N}$; and indeed, $\lim_{x\to 0} e^{-1/x^2} (1/x)^n = \lim_{y\to \infty} \frac{y^n}{e^{y^2}} = 0$ since $\lim_{y \to +\infty} \frac{y^n}{e^y} = 0$ and $e^{y^2} > e^{|y|}$ for y > 1.

Now let's prove that for every n = 0, 1, 2, ..., on $\mathbb{R} \setminus \{0\}$ we have $f^{(n)}(x) = e^{-1/x^2} p_n(1/x)$ for a polynomial p_n . Indeed, this is true for n=0, and if this is true for some n then

$$f^{(n+1)}(x) = e^{-1/x^2} \frac{2}{x^3} p_n(1/x) - e^{-1/x^2} p_n'(1/x) \frac{1}{x^2} = e^{-1/x^2} p_{n+1}(x)$$

where $p_{n+1}(x) = p_n(1/x) \cdot (2/x^3) - p'_n(1/x) \cdot (1/x^2)$.

Now if, by induction, $f^{(n)}(0) = 0$ for some n, then

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \lim_{x \to 0} \frac{e^{-1/x^2} p_n(1/x)}{x} = \lim_{x \to 0} e^{-1/x^2} p_n(1/x) \cdot (1/x) = 0.$$

Chapter 23, pp. 489-498:

2. Prove that the series $\sum a^n n!/n^n$ converges for 0 < a < e and diverges for a > e. 10pt

Solution. To use the ratio test, we compute

$$\frac{a^{n+1}(n+1)!/(n+1)^{n+1}}{a^n n!/n^n} = \frac{a(n+1)}{(n+1)^{n+1}/n^n} = \frac{a}{(n+1)^n/n^n} = \frac{a}{(n+1)^n/n^n}$$

which converges to a/e as $n \to \infty$. Thus by the ratio test, the series converges if a/e < 1 and diverges if a/e > 1.

5. (a) Prove that if the series $\sum x_i$ converges absolutely, then so does $\sum x_i^3$. 5pt

Solution. Since $\sum x_i$ converges, $x_i \longrightarrow 0$ as $i \longrightarrow \infty$, so $|x_i|^3 < |x_i|$ for all n large enough, and since $\sum |x_i|$ converges, $\sum |x_i|^3$ converges by the comparison test. (b) Show that the series $\sum_{i=1}^{\infty} x_i = 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{\sqrt[3]{2}} - \frac{1}{2\sqrt[3]{2}} - \frac{1}{2\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} - \frac{1}{2\sqrt[3]{3}} - \frac{1}{2\sqrt[3]{3}} + \cdots$ converges, but

Solution. We have $x_i \longrightarrow 0$, and the grouping $\left(1-\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{\sqrt[3]{2}}-\frac{1}{2\sqrt[3]{2}}-\frac{1}{2\sqrt[3]{2}}\right)+\left(\frac{1}{\sqrt[3]{3}}-\frac{1}{2\sqrt[3]{3}}-\frac{1}{2\sqrt[3]{3}}\right)+\cdots=0+0+0+\cdots$ of $\sum x_i$, with bounded size of groups, converges, so the series $\sum x_i$ converges. Now, $\sum x_i^3=1-\frac{1}{8}-\frac{1}{8}+\frac{1}{2}-\frac{1}{8}\cdot\frac{1}{2}-\frac{1}{8}\cdot\frac{1}{2}+\frac{1}{3}-\frac{1}{8}\cdot\frac{1}{3}-\frac{1}{8}\cdot\frac{1}{3}+\cdots$, its grouping

$$\left(1 - \frac{1}{8} - \frac{1}{8}\right) + \left(\frac{1}{2} - \frac{1}{8} \cdot \frac{1}{2} - \frac{1}{8} \cdot \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{8} \cdot \frac{1}{3} - \frac{1}{8} \cdot \frac{1}{3}\right) + \dots = \frac{3}{4} \cdot 1 + \frac{3}{4} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{1}{3} + \dots = \frac{3}{4}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots\right)$$

diverges, so $\sum x_i^3$ also diverges.

10pt

A2. (a) Let $f:[1,+\infty) \longrightarrow \mathbb{R}$ be a decreasing nonnegiative function. For every $i \in \mathbb{N}$, let $a_i = f(i)$. Prove 10pt that a finite limit $l = \lim_{n \to \infty} \left(\sum_{i=1}^n a_i - \int_1^n f \right)$ exists and satisfies $0 \le l \le a_1$.

Solution. For any $i, a_i \ge f(x) \ge a_{i+1}$ for any $x \in [a_i, a_{i+1}]$, so $a_i = a_i \cdot 1 \ge \int_i^{i+1} f \ge a_{i+1} \cdot 1 = a_{i+1}$. Put Also for any n, $\gamma_n = \sum_{i=1}^{n-1} (a_i - \int_i^{n+1} f) + a_n \ge 0$, so $l = \lim \gamma_n \ge 0$ exists. And since $\gamma_1 = a_1$, $l \le a_1$.

(b) Prove that a finite limit $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \cdots + \frac{1}{n} - \log n\right)$ exists. (This $\gamma = 0.5772...$ is called 5pt Euler-Mascheroni constant.)

Solution. For the decreasing function f(x) = 1/x, $x \ge 1$, we have $a_i = f(i) = \frac{1}{i}$, $i \in \mathbb{N}$, and $\int_1^n f = \log n$, $n \in \mathbb{N}$. So by (a), $\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{i} - \log n \right)$ exists, and is $\leq a_1 = 1$.