Math 4181H

Solutions to Midterm 1

- 1. If $a, b \in \mathbb{R}$ and b < a + 1/n for all $n \in \mathbb{N}$, prove that $b \le a$.

 Solution. Proof by contraposition: Suppose b > a, then b a > 0, so, by a property of natural numbers, there exists $n \in \mathbb{N}$ such that 1/n < b a, which means that b > a + 1/n for this n.
- 2. (a) Let A and B be nonempty sets of real numbers such that a < b for all $a \in A$ and all $b \in B$. Prove that there is $x \in \mathbb{R}$ such that $a \le x \le b$ for all $a \in A$ and all $b \in B$.

Solution. A is bounded above (by any element of B). So, $x = \sup A$ exists (by the axiom of completeness). By definition, we have $x \ge a$ for all $a \in A$, and for every $b \in B$, since b is an upper bound of A, $x \le b$.

- (b) Give an example of nonepty sets A and B of rational numbers such that a < b for all $a \in A$ and all $b \in B$ and there are no $x \in \mathbb{Q}$ such that $a \le x \le b$ for all $a \in A$ and all $b \in B$. (And justify your answer, of course.) Solution. Put $A = \{a \in \mathbb{Q} : a < \sqrt{2}\}$ and $B = \{b \in \mathbb{Q} : b > \sqrt{2}\}$, then b > a for all $a \in A$ and $b \in B$. Since \mathbb{Q} is dense in \mathbb{R} , sup $A = \inf B = \sqrt{2}$, so $x = \sqrt{2}$ is the only real number satisfying $a \le x \le b$ for all $a \in A$ and $b \in B$. However, $\sqrt{2} \notin \mathbb{Q}$, so there is no $x \in \mathbb{Q}$ with this property.
- 3. Let $A \subseteq \mathbb{R}$ be bounded above and have no maximal element. Prove that $\sup A$ is a limit point of A.

 Solution. Let $b = \sup A$. Since A has no maximal element, $b \notin A$. For every $\varepsilon > 0$ there is $a \in A$ such that $a > b \varepsilon$, and $a \le b$ by definition, so $|a b| < \varepsilon$ with $a \ne b$. Hence, b is a limit point of A.
- 4. Let $a \in \mathbb{R} \setminus \{0\}$ and let $\varepsilon > 0$. If $|x a| < \min\{|a|, \varepsilon/(3|a|)\}$, prove that $|x^2 a^2| < \varepsilon$. Solution. If |x - a| < |a|, then $|x + a| \le |x - a| + |2a| < 3|a|$; if also $|x - a| < \varepsilon/(3|a|)$, then $|x^2 - a^2| = |x - a| \cdot |x + a| < (\varepsilon/(3|a|))(3|a|) = \varepsilon$.
- 5. Let a > 1, let $n, m \in \mathbb{N}$, n < m, and assume that $b = \sqrt[n]{a}$ and $c = \sqrt[m]{a}$ exist (so that $b^n = c^m = a$). Prove that b > c.

Solution. First of all, if x > y > 0 then $x^n > y^n$ for all $n \in \mathbb{N}$ by induction. We now have c > 1, since otherwise $c^m \le 1^m = 1 < a$, and, since $m - n \in \mathbb{N}$, also $c^{m-n} > 1$. By the way of contradiction, assume that $c \ge b$; then $a = c^m = c^n c^{m-n} \ge b^n c^{m-n} > a \cdot 1 = a$.

10% **6.** Prove that for every even $n \in \mathbb{N}$ there exist $r \in \mathbb{N}$ and an odd $m \in \mathbb{N}$ such that $n = 2^r m$.

Solution. I'll use complete induction. For n=2 the statement is true, $n=2^1\cdot 1$. Suppose $n\in\mathbb{N}$ is even and the statement holds for all even natural numbers less than n. n is even, so n=2k for some $k\in\mathbb{Z}$, and then $1\leq k< n$. If k is odd, we are done, $n=2^1k$. If k is even, by induction hypothesis $k=2^rm$ for some $r\in\mathbb{N}$ and an odd $m\in\mathbb{N}$, and so $n=2^{r+1}m$.

Another solution. Let $n \in \mathbb{N}$ be even, let $S = \{r \in \mathbb{N}^n 2^r \mid n\}$. $S \neq \emptyset$ since $2^1 \mid n$. S is bounded above since there is $r_0 \in \mathbb{N}$ such that $2^{r_0} > n$, then $2^r > n$ for all $r \geq r_0$, and then $2^r \mid n$ for all $r \geq r_0$. Hence, S has a maximal element r; let $m = n/2^r$, then $m \in \mathbb{N}$. If m is even, then m = 2k for some $k \in \mathbb{N}$, so $n = 2^r m = 2^{r+1}k$, so $2^{r+1} \mid n$, which contradicts the choice of r. Hence, m is odd, and $n = 2^r m$.

7. (a) Prove that the set of transcendental (that is, non-algebraic) numbers is dense in \mathbb{R} .

Solution. The set of algebraic numbers is countable whereas every interval I in \mathbb{R} is uncountable, so I cannot consist of algebraic numbers only.

10% (b) Prove that Cantor's set contains a transcendental number.

Solution. (I know that this problem was in the list of "review problems", but I like it.) Cantor's set cannot consist of algebraic numbers only since it is uncountable whereas the set of algebraic numbers is countable.