Math 4181H

Solutions to Midterm 2

20% **1.** Find $\lim_{n \to \infty} \sqrt[n]{100n^{100} + 2^n}$ (and justify your answer, of course).

Solution. Since $100n^{100}/2^n \longrightarrow 0$, we have $100n^{100} < 2^n$ for all n large enough, so $2^n < 100n^{100} + 2^n < 2 \cdot 2^n$ for large n, so $2 < \sqrt[n]{100n^{100} + 2^n} < 2\sqrt[n]{2}$ for large n. Since $\lim 2\sqrt[n]{2} = 2$, $\lim \sqrt[n]{100n^{100} + 2^n} = 2$ by the squeeze theorem.

Another solution. For all n, $\sqrt[n]{100n^{100}+2^n}=2\sqrt[n]{100n^{100}/2^n+1}>2$. Since $100n^{100}/2^n\longrightarrow 0$ we have $100n^{100}/2^n<1$ for all n large enough, so $\limsup 2\sqrt[n]{100n^{100}/2^n+1}\le 2\limsup \sqrt[n]{2}=2$. Hence, $\lim \sqrt[n]{100n^{100}+2^n}=2$.

Yet another solution. We have $\frac{100(n+1)^{100}+2^{n+1}}{100n^{100}+2^n} = \frac{100(n+1)^{100}/2^n+2}{100n^{100}/2^n+1} \longrightarrow \frac{0+2}{0+1} = 2$, so $\lim \sqrt[n]{100n^{100}+2^n} = 2$ by one of the "review problems".

- 20% 2. Let (x_n) be a sequence satisfying $|x_n x_m| < 1/\min\{n, m\}$ for all n, m. Prove that this sequence converges. Solution. The sequence is Cauchy: given $\varepsilon > 0$, find k such that $1/k < \varepsilon$, then for any $n, m \ge k$ we have $|x_n x_m| < 1/\min\{n, m\} \le 1/k < \varepsilon$. Hence, it converges.
- 3. If $\lim_{x\to 0^+} f(x) = \infty$, prove that $\lim_{x\to +\infty} \frac{1}{f(1/x)} = 0$. (Proofs like $\frac{1}{0^+} = +\infty$ are not accepted.) Solution. Let $A = \operatorname{Rng}(f) \cap (0, +\infty)$, let $B = \{1/x : x \in A\} = \operatorname{Rng}(1/f) \cap (0, +\infty)$. Let $\varepsilon > 0$. Find $\delta > 0$ such that for every $x \in A$ with $x < \delta$ one has $|f(x)| > 1/\varepsilon$. Then for any $x \in B$ with $x > 1/\delta$ we have $1/x \in A$ and $0 < 1/x < \delta$, so $|f(1/x)| > 1/\varepsilon$, so $\left|\frac{1}{f(1/x)}\right| < \varepsilon$. Hence, $\lim_{x\to +\infty} \frac{1}{f(1/x)} = 0$.

Another solution. Let $A = \operatorname{Rng}(f) \cap (0, +\infty)$, let $B = \{1/x : x \in A\} = \operatorname{Rng}(1/f) \cap (0, +\infty)$. Let (x_n) be a sequence in B such that $x_n \longrightarrow +\infty$, then $1/x_n \in A$ and $1/x_n \longrightarrow 0^+$ $(1/x_n \longrightarrow 0 \text{ with } 1/x_n > 0 \text{ for all } n)$, so $f(1/x_n) \longrightarrow \infty$, so $\frac{1}{f(1/x_n)} \longrightarrow 0$.

Yet another solution. The function $g(x) = \frac{1}{f(1/x)}$ is the composition of three functions: $x \mapsto 1/x$, $y \mapsto f(y)$, and $z \mapsto 1/z$. As $x \to +\infty$, $1/x \to 0^+$; as $y \mapsto 0^+$, $f(y) \to \infty$; as $z \to \infty$, $1/z \to 0$. Also, the function 1/x doesn't take the "forbidden" (for f) value 0 in a neighborhood of $+\infty$, and f doesn't take the "forbidden" (for 1/z) value ∞ . Hence, by the theorem about the limit of the composition, $\lim_{x \to +\infty} g(x) = 0$.

4. Let $f: A \longrightarrow \mathbb{R}$ be a monotone function and let $a \in A$ be a limit point of both $A \cap (-\infty, a)$ and $A \cap (a, +\infty)$. Suppose there are sequences (x_n) and (y_n) in $A \setminus \{a\}$ such that (x_n) is increasing to a, (y_n) is decreasing to a, and $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. Prove that f is continuous at a.

Solution. Since f is monotone, both $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exist and satisfy $\lim_{x\to a^-} f(x) \leq f(a) \lim_{x\to a^+} f(x)$. Since these limits exist, they can be found along any corresponding sequence: we have $\lim_{x\to a^-} f(x) = \lim f(x_n)$ and $\lim_{x\to a^+} f(x) = \lim f(y_n)$. Since $\lim f(x_n) = \lim f(y_n)$, we obtain that $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$, and so, $\lim_{x\to a} f(x)$ exists and equals f(a).

- **5.** Let $f:[0,+\infty) \longrightarrow \mathbb{R}$ be a continuous function with the property that a finite $\lim_{x\to+\infty} f(x)$ exists.
- $_{20\%}$ (a) Prove that f is bounded.

Solution. Let $b = \lim_{x \to +\infty} f(x)$. Find M such that |f(x) - b| < 1 for all $x \ge M$, then $|f(x)| \le |f(x) - b| + |b| < 1 + |b|$ on $[M, +\infty)$. Since f is continuous on the closed bounded interval [0, M], f is bounded on [0, M]. Hence, f is bounded on $[0, +\infty)$.

50% (b) Does f have to attain its maximal value?

Solution. No, as the example $f(x) = \frac{x}{1+x}$, x > 0, shows: $\lim_{x \to +\infty} f(x) = 1 = \sup \operatorname{Rng}(f)$, but $f(x) \neq 1$ for all x.