Math 4181H

Solutions to Midterm 3

1. Let f be a function differentiable in a neighborhood of a point a with f'(a) > 0.

(a) Prove that f is strictly increasing at a (that is, for all x in a neighborhood of a, f(x) < f(a) if x < a and f(x) > f(a) if x > a).

Solution. Since $f'(a) = \lim_{x\to 0} \frac{f(x)-f(a)}{x-a} > 0$, we have $\frac{f(x)-f(a)}{x-a} > 0$ for all $x \neq a$ in a neighborhood I of a. This imlies that f(x) - f(a) > 0 for all $x \in I$ with x > a and f(x) - f(a) < 0 for all $x \in I$ with x < a, that is, f(x) > f(a) for all $x \in I$ with x > a and f(x) < f(a) for all $x \in I$ with x < a.

 $_{20\%}$ (b) If f' is continuous at a, prove that f is strictly increasing in a neighborhood of a.

Solution. If f' is continuous at a and f'(a) > 0 then f'(x) > 0 for all x in some neighborhood I of a, so, f is strictly increasing on I.

2. Prove that for any $n \in \mathbb{N}$ and any $x_1, \ldots, x_n > 0$, $\log\left(\frac{x_1 + \cdots + x_n}{n}\right) \geq \frac{\log x_1 + \cdots + \log x_n}{n}$.

Solution. The function log is concave (as the inverse of the increasing convex function exp, or since $\log' x = 1/x$ is decreasing). So by Jensen's inequality for concave functions, $\log\left(\frac{x_1+\dots+x_n}{n}\right) \geq \frac{\log x_1+\dots+\log x_n}{n}$.

(Ok, if we only have Jensen's inequality for convex functions: Given $x_1, \ldots, x_n > 0$, put $y_i = \log x_i$, $i = 1, \ldots, n$, then by (the convex) Jensen's inequality $\exp\left(\frac{y_1 + \cdots + y_n}{n}\right) \leq \frac{e^{y_1} + \cdots + e^{y_n}}{n} = \frac{x_1 + \cdots + x_n}{n}$. Since log is increasing, this implies that $\frac{y_1 + \cdots + y_n}{n} \leq \log\left(\frac{x_1 + \cdots + x_n}{n}\right)$.)

3. Suppose f is differentiable on an interval I and $f'(x) \neq 0$ for all $x \in I$; prove that f is strictly monotone on I

Solution. It cannot be that f'(x) > 0 and f'(y) < 0 for some $x, y \in I$, since then, by Darboux's theorem, we would have f'(c) = 0 for some c between x and y. Hence, either f'(x) > 0 for all $x \in I$ or f'(x) < 0 for all $x \in I$; so either f is strictly increasing on I, or f is strictly decreasing on I.

Another solution. Suppose f is not strictly monotone on I. Then f is not strictly monotone on a three-point subset of I: there are $x, y, z \in I$ with x < y < z such that $f(x) \le f(y) \ge f(z)$ or $f(x) \ge f(y) \le f(z)$. Then on the closed bounded interval [x, z], f attains its maximal or minimal value at an inner point u (that is, a point $u \in (x, z)$), and then f'(u) = 0.

15% **4.** (a) Prove that for any x > 0, $\sin x < x$.

Solution. I'll use the fact that if f(0) = 0 and f' > c on an interval (0, a), then f(x) > cx on (0, a). Since $\sin(0) = 0$ and $\sin' = \cos < 1$ on the interval $(0, \pi/2)$, $\sin x < x$ on this interval. For $x \ge \pi/2$, $\sin x \le 1 < \pi/2 \le x$.

(b) Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\sin x > (1 - \varepsilon)x$ for all $x \in (0, \delta)$.

Solution. We have $\lim_{x\to 0} \frac{\sin x}{x} = \sin' 0 = 1$, so for any $\varepsilon > 0$ there is $\delta > 0$ such that $\frac{\sin x}{x} > 1 - \varepsilon$ for all $x \in (0, \delta)$, so $\sin x > (1 - \varepsilon)x$ for all $x \in (0, \delta)$.

5. Find $(f^{-1})''(f(a))$ in terms of the derivatives of f at a.

Solution. For any x in a neighborhood of b = f(a), $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. So, by the formula $(1/h)' = -h'/h^2$ and by the chain rule,

$$(f^{-1})''(b) = \frac{-1}{f'(f^{-1}(b))^2} f''(f^{-1}(b))(f^{-1})'(b) = \frac{-1}{f'(a)^2} f''(a) \frac{1}{f'(a)} = \frac{-f''(a)}{f'(a)^3}.$$

1