Math 4181H

Solutions to Final exam review problems

1. Let $\sum a_i$ be a converging series. Prove or disprove:

(i) If $b_i \longrightarrow 0$, then the series $\sum a_i b_i$ converges.

Solution. False: Let $a_i = b_i = \frac{(-1)^{i-1}}{\sqrt{i}}$, $i \in \mathbb{N}$, then $\sum a_i$ converges by Leibniz's test, but $\sum a_i b_i = \sum \frac{1}{i}$ diverges.

(ii) If $b_i \longrightarrow 0$ and $b_i \ge 0$ for all i, then $\sum a_i b_i$ converges.

Solution. False: Let $a_i = \frac{(-1)^{i-1}}{\sqrt{i}}$ for all i and $b_i = \frac{1}{\sqrt{i}}$ for odd i and i and

(iii) If $b_i \searrow 0$ (decreases and tends to 0), then $\sum a_i b_i$ converges.

Solution. This is true by Abel's test. (In fact, (b_i) could converge to any limit, not necessarily 0.)

(iv) If $\sum a_i$ converges absolutely and $b_i \longrightarrow 0$, then $\sum a_i b_i$ converges.

Solution. This is true: the sequence (b_i) is bounded, there is b such that $|b_i| \le b$ for all i, so $|a_ib_i| \le b|a_i|$ for all i, and the series $\sum b|a_i| = b\sum |a_i| < \infty$.

2. Suppose f is differentiable on an interval I. Prove that f' is a pointwise limit of a sequence of continuous functions.

Solution. For any $x \in I$, $f'(x) = \lim_{n \to \infty} \frac{f(x+1/n) - f(x)}{1/n} = \lim_{n \to \infty} n(f(x+1/n) - f(x))$, where the functions $f_n(x) = n(f(x+1/n) - f(x))$ are continuous (moreover, differentiable) for all n.

3. Prove Dini's theorem: if (f_n) is a monotone sequence of continuous functions on a closed bounded interval I that converges pointwise to a continuous function f, then $f_n \Longrightarrow f$.

Solution. Replacing f_n by $-f_n$ for all n if needed, we may assume that f_n decrease to f, $f_1(x) \ge f_2(x) \ge \cdots \ge f(x)$ and $f_n(x) \longrightarrow f(x)$ for all $x \in I$. Assume that f_n do not converge to f uniformly, then there is $\varepsilon > 0$ and a subsequence (f_{n_k}) of (f_n) such that $||f_{n_k} - f|| > \varepsilon$ for all k. Then for every k there is $x_k \in I$ such that $f_{n_k}(x_k) > f(x_k) + \varepsilon$. By Bolzano-Weierstrass's theorem, there exists a subsequence (x_{k_i}) of (x_k) that converges to a point $a \in I$. Now, for every n, $f_n(x_{k_i}) \ge f_{n_{k_i}}(x_{k_i}) > f(x_{k_i}) + \varepsilon$ for all i such that $n_{k_i} \ge n$, so, by continuity of f_n and f, $f_n(a) = \lim_{i \to \infty} f_n(x_{k_i}) \ge \lim_{i \to \infty} f(x_{k_i}) + \varepsilon = f(a) + \varepsilon$. Hence, $f_n(a) \not \longrightarrow f(a)$, contradiction.

4. Let [a,b] be a (closed bounded) interval and let (c_n) be a sequence diverging to $+\infty$.

(a) Prove that $\int_a^b \sin(c_n x) dx \longrightarrow 0$ as $n \longrightarrow \infty$.

Solution. For n such that $c_n \neq 0$,

$$\left| \int_{a}^{b} \sin(c_n x) \, dx \right| = \frac{1}{|c_n|} \left| \cos(c_n b) - \cos(c_n a) \right| \le \frac{2}{c_n} \longrightarrow 0.$$

(b) Prove the Riemann-Lebesgue's lemma: For any continuous function f on a closed bounded interval [a,b], $\int_a^b f(x) \sin(c_n x) dx \longrightarrow 0$ as $n \longrightarrow \infty$.

Solution. First, let's show that $\int_a^b h(x) \sin(c_n x) dx \longrightarrow 0$ for every step function h. Let $a = x_0 < x_1 < \cdots x_m = b$ and d_1, \ldots, d_m be such that $h(x) = d_i$ on (x_{i-1}, x_i) , $i = 1, \ldots, m$. By (a) for every i, $\int_{x_{i-1}}^{x_i} \sin(c_n x) dx \longrightarrow 0$ as $n \longrightarrow \infty$, hence $\int_a^b h(x) \sin(c_n x) dx = \sum_{i=1}^m d_i \int_{x_i}^{x_i} \sin(c_n x) dx \longrightarrow 0$.

Let $\varepsilon > 0$; find a step function h such that $||f - h|| < \varepsilon$. Then for every n, $\int_a^b \left| \left(f(x) - h(x) \right) \sin(c_n x) \right| dx < \varepsilon (b-a)$, so

$$\left| \int_a^b f(x) \sin(c_n x) \, dx \right| \leq \left| \int_a^b h(x) \sin(c_n x) \, dx \right| + \left| \int_a^b \left(f(x) - h(x) \right) \sin(c_n x) \, dx \right| \leq \left| \int_a^b h(x) \sin(c_n x) \, dx \right| + \varepsilon (b - a).$$

Since $\lim_{n\to\infty} \int_a^b h(x) \sin(c_n x) dx = 0$, $\lim\sup_{n\to\infty} \left| \int_a^b f(x) \sin(c_n x) dx \right| \le \varepsilon (b-a)$. Since this is true for every $\varepsilon > 0$, $\lim\sup_{n\to\infty} \left| \int_a^b f(x) \sin(c_n x) dx \right| = 0$, so $\lim_{n\to\infty} \left| \int_a^b f(x) \sin(c_n x) dx \right| = 0$.

5. Prove that the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ converges uniformly on \mathbb{R} .

Solution. For each n and any x, the function $f_n(x) = \frac{x}{n(1+nx^2)}$ tends to 0 as $x \to \infty$ and $f'_n(x) = 0$ iff $x = \pm \frac{1}{\sqrt{n}}$, so $||f_n|| = \sup |f_n(x)| = |f_n(\pm \frac{1}{\sqrt{n}})| = \frac{1}{2n\sqrt{n}}$. Since the series $\sum \frac{1}{2n\sqrt{n}}$ converges, $\sum f_n$ converges uniformly by the Weierstrass M-test.

- **6.** Find the set of x for which the series $\sum_{n=0}^{\infty} 2^n \sin^n x$ converges, and find the sum of this series on this set. Solution. For every x, this is a geometric progression, which converges iff $|2\sin x| < 1$, that is, iff $|\sin x| < 1/2$, that is, iff $x \in \bigcup_{n \in \mathbb{Z}} (n\pi - \pi/6, n\pi + \pi/6)$. The sum of the series on this set is $\frac{1}{1-2\sin x}$.
- **7.** Prove that the zeta function $\zeta(x) = \sum_{n=1}^{\infty} n^{-x}$, x > 1, is infinitely differentiable on $(1, +\infty)$.

Solution. First of all notice that for any a>1 and $k\in\mathbb{N}$ the series $\sum (\log n)^k n^{-a}$ converges. Indeed, let 1< b< a, then $\lim_{n\to\infty} (\log n)^k/n^{a-b}=0$ (because $\lim_{t\to+\infty} t^k/e^{(a-b)t}=0$), so $(\log n)^k n^{-a}< n^{-b}$ for all n large enough, and $\sum n^{-b}<\infty$, so $\sum (\log n)^k n^{-a}<\infty$ by comparison.

The series $\sum_{n=1}^{\infty} n^{-x}$ converges (by the integral test) for every x > 1, and so, ζ is defined on $(1, +\infty)$. The convergence is locally uniform: for every a > 1, for every $x \ge a$ we have $n^{-x} \le n^{-a}$ and $\sum n^{-a} < \infty$, so $\sum n^{-x}$ converges uniformly on $[a, +\infty)$ by the M-test. Hence, ζ is continuous on $(1, +\infty)$.

Consider the series $\sum (n^{-x}) = -\sum (\log n) n^{-x}$. It also converges locally uniformly: for every a > 1, for every $x \ge a$ we have $(\log n)n^{-x} \le (\log n)n^{-a}$ and $\sum (\log n)n^{-a} < \infty$, so $\sum (\log n)n^{-x}$ converges uniformly on $[a, +\infty)$ by the M-test. Hence, ζ is differentiable with $\zeta'(x) = -\sum_{n=1}^{\infty} (\log n) n^{-x}$.

Now assume by induction on k that, for some $k \in \mathbb{N}$, ζ is k-times differentiable with $\zeta^{(k)}(x) =$ $(-1)^k \sum_{n=1}^{\infty} (\log n)^k n^{-x}, \ x > 1$. Then, since the series $\sum \left((\log n)^k n^{-x} \right)' = -\sum (\log n)^{k+1} n^{-x}$ converges locally uniformly on $(1, +\infty)$, $\zeta^{(k)}$ is differentiable and $\zeta^{(k+1)}(x) = (-1)^{k+1} \sum_{n=1}^{\infty} (\log n)^{k+1} n^{-x}$. So, by induction, ζ is infinitely differentiable on $(1, +\infty)$, with $\zeta^{(k)}(x) = (-1)^k \sum_{n=1}^{\infty} (\log n)^k n^{-x}, \ x > 1$, for all k.

8. Prove that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is an even function, then $a_n = 0$ for all odd n, and if f is an odd function, then $a_n = 0$ for all even n.

Solution. If f is even, then $f(x) = f(-x) = \sum_{n=0}^{\infty} a_n (-1)^n x^n$. Since the power series defining f is unique,

we must have $a_n = (-1)^n a_n$ for all n, so $a_n = 0$ for all odd n. If f is odd, then $f(x) = -f(-x) = -\sum_{n=0}^{\infty} a_n (-1)^n x^n = \sum_{n=0}^{\infty} a_n (-1)^{n+1} x^n$. Since the power series defining f is unique, we must have $a_n = (-1)^{n+1} a_n$ for all n, so $a_n = 0$ for all even n.

Another solution. If f is even, then $f^{(n)}$ is an odd function for every odd n, so $f^{(n)}(0) = 0$, so $a_n = \frac{f^{(n)}(0)}{n!} = 0$ for all odd n. If f is odd, then $f^{(n)}$ is an odd function for every even n, so $f^{(n)}(0) = 0$, so $a_n = \frac{f^{(n)}(0)}{n!} = 0$ for all even n.

9. Find each of the following sums.

(i)
$$1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

Solution. This is e^{-x} . (The series is obtained by substituting x by -x in $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots$)

(ii)
$$1 - x^3 + x^6 - x^9 + \dots$$
, $|x| < 1$.

Solution. This is $\frac{1}{1+x^3}$. (The series is obtained by substituting x by x^3 in $1-x+x^2-x^3+\ldots$)

(iii)
$$\frac{x^2}{2} - \frac{x^3}{3 \cdot 2} + \frac{x^4}{4 \cdot 3} - \frac{x^5}{5 \cdot 4} + \dots, |x| < 1.$$

Solution. Let $f(x) = \frac{x^2}{2} - \frac{x^3}{3 \cdot 2} + \frac{x^4}{4 \cdot 3} - \frac{x^5}{5 \cdot 4} + \dots$, |x| < 1. The radius of convergence of this series is 1 (by the ratio test), so the function is defined on (-1,1). Then $f'(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \log(1+x), |x| < 1$. So, $f(x) = \int \log(1+x) = (1+x)(\log(1+x)-1) + C$. Since f(0) = 0 we have C = 1, so $f(x) = (1+x)\log(1+x) - x$. (And indeed, we can check that $(1+x)(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots) - x = \frac{x^2}{2} - \frac{x^3}{3 \cdot 2} + \frac{x^4}{4 \cdot 3} - \frac{x^5}{5 \cdot 4} + \dots$)

10. Evaluate the following sums:

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} \pi^{2n}}{(2n)!}$$
.

Solution. This is the value at the point 2π of the function $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos x$. So, the sum is equal to $\cos(2\pi) = 1$.

(ii)
$$\sum_{n=0}^{\infty} \frac{1}{(2n)!}$$
.

Solution. This is the value at the point 1 of the function $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = \cosh x = \frac{e^x + e^{-x}}{2}$, so the sum is $\cosh 1 = \frac{e^1 + e^{-1}}{2} = \frac{e^2 + 1}{2e}.$ (iii) $\sum_{n=0}^{\infty} \frac{1}{(2n+1)2^n}.$

(iii)
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)2^n}$$
.

Solution. This is the value at the point $\frac{1}{\sqrt{2}}$ of the function $f(x) = \sqrt{2} \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}$. We have $f'(x) = \int_{-\infty}^{\infty} \frac{1}{2n+1} x^{2n+1} dx$. $\sqrt{2}\sum_{n=0}^{\infty}x^{2n}=\frac{1}{1-x^2}$, so $f(x)=\sqrt{2}\int\frac{dx}{1-x^2}=\frac{1}{\sqrt{2}}(\log(1+x)-\log(1-x))=\frac{1}{\sqrt{2}}\log\frac{1+x}{1-x}$, |x|<1. So, the sum is $\frac{1}{\sqrt{2}}\log\frac{1+1/\sqrt{2}}{1-1/\sqrt{2}} = \frac{1}{\sqrt{2}}\log\frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{1}{\sqrt{2}}\log(3+2\sqrt{2}).$

(iv)
$$\sum_{n=0}^{\infty} \frac{1}{3^n(n+1)}$$
.

Solution. This is the value at the point $\frac{1}{3}$ of the function $f(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)} x^n = \frac{-1}{x} \log(1-x)$. So, the sum is $-3\log(2/3) = 3\log(3/2)$.

11. If
$$f(x) = (\sin x)/x$$
 and $f(0) = 1$, find $f^{(k)}(0)$, $k \in \mathbb{N}$.

Solution. For all x, $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, so for all $x \neq 0$, $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}$. For x = 0 this formula also works, since at 0 both f and the series are equal to 1. Hence, f is an analytic function (it is given by a power series on the whole \mathbb{R}), and so, $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}$ is the Taylor series of f. Hence, for any k, $f^{(k)}(0) = (2n)! \frac{(-1)^n}{(2n+1)!} = \frac{(-1)^n}{2n+1}$ if k = 2n for some n (k is even), and $f^{(k)}(0) = 0$ if k is odd.

12. Let $\alpha \in \mathbb{R}$.

(a) Let
$$f(x) = \sum_{n=0}^{\infty} {\binom{\alpha}{n}} x^n$$
, $|x| < 1$. Prove that $(1+x)f'(x) = \alpha f(x)$.

Solution. The radius of convergence of the series is 1 by the "ratio test", since $\binom{\alpha}{n}/\binom{\alpha}{n+1} = \lfloor (n+1)/(\alpha - 1) \rfloor$ |n| \rightarrow 1. I'll use the identities $n\binom{\alpha}{n} = \alpha\binom{\alpha-1}{n-1}$ and $\binom{\alpha-1}{n} + \binom{\alpha-1}{n-1} = \binom{\alpha}{n}$, $\alpha \in \mathbb{R}$, $n \geq 1$. We have $f'(x) = \sum_{n=1}^{\infty} n\binom{\alpha}{n} x^{n-1} = \alpha \sum_{n=1}^{\infty} \binom{\alpha-1}{n-1} x^{n-1} = \alpha \sum_{n=0}^{\infty} \binom{\alpha-1}{n} x^n$, so

$$(1+x)f'(x) = \alpha \left(\sum_{n=0}^{\infty} {\alpha-1 \choose n} x^n + \sum_{n=0}^{\infty} {\alpha-1 \choose n} x^{n+1} \right) = \alpha \left(\sum_{n=0}^{\infty} {\alpha-1 \choose n} x^n + \sum_{n=1}^{\infty} {\alpha-1 \choose n-1} x^n \right)$$
$$= \alpha \left(1 + \sum_{n=1}^{\infty} \left({\alpha-1 \choose n} + {\alpha-1 \choose n-1}\right) x^n \right) = \alpha \sum_{n=0}^{\infty} {\alpha \choose n} x^n = \alpha f(x).$$

(b) Prove that any function f satisfying the differential equation $(1+x)f'(x) = \alpha f(x)$ has form $f(x) = c(1+x)^{\alpha}$ for some $c \in \mathbb{R}$, and deduce "the binomial formula" $(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\binom{\alpha}{n}} x^n$, |x| < 1.

Solution. Consider the function $g(x) = f(x)(1+x)^{-\alpha}$. We have $g'(x) = f'(x)(1+x)^{-\alpha} - \alpha f(x)(1+x)^{-\alpha-1} = f(x)(1+x)^{-\alpha}$. $(1+x)^{-\alpha-1}(f'(x)(1+x)-\alpha f(x))=0$, so g=const=c. Hence, $f(x)=c(1+x)^{\alpha}$. Now, if $f(x)=\sum_{n=0}^{\infty}\binom{\alpha}{n}x^n$, then from (a), $(1+x)f'(x) = \alpha f(x)$, so $f(x) = c(1+x)^{\alpha}$ for some c. Since f(0) = 1, c = 1.

13. The Fibbonaci sequence is defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_n + a_{n+1}$ for all $n \in \mathbb{N}$.

(a) Show that $a_{n+1}/a_n \leq 2$.

Solution. Clearly, (a_n) is an increasing sequence of positive integers. Since for any $n \geq 2$, $a_{n+1} = a_n + a_{n-1} \leq a_n + a_{n-1} \leq$ $2a_n$, we get that $a_{n+1}/a_n \leq 2$.

(b) Let $f(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$. Prove that f is defined on $\left(\frac{-1}{2}, \frac{1}{2}\right)$.

Solution. For any x with |x| < 1/2 we have $\limsup \left| \frac{a_{n+1}x^n}{a_nx^{n-1}} \right| = \limsup \left| \frac{a_{n+1}}{a_n} \right| \cdot |x| < 1$, so the series $\sum a_nx^{n-1}$ converges (absolutely) by the ratio test.

(c) Prove that if |x| < 1/2, then $f(x) = \frac{1}{1-x-x^2}$.

Solution. Adding the series $xf(x) = \sum_{n=1}^{\infty} a_n x^n = \sum_{n=2}^{\infty} a_{n-1} x^{n-1}$ and $x^2 f(x) = \sum_{n=1}^{\infty} a_n x^{n+1} = \sum_{n=3}^{\infty} a_{n-2} x^{n-1}$, we obtain

$$xf(x) + x^2 f(x) = a_1 x + \sum_{n=3}^{\infty} (a_{n-1} + a_{n-2}) x^{n-1} = a_1 x + \sum_{n=3}^{\infty} a_n x^{n-1} = \sum_{n=2}^{\infty} a_n x^{n-1} = f(x) - 1,$$
 so $f(x) - xf(x) - x^2 f(x) = 1$, so $f(x) = \frac{1}{1 - x - x^2}$.

(d) Decompose $\frac{1}{1-x-x^2}$ as $\frac{b_1}{c_1-x} + \frac{b_2}{c_2-x}$ to obtain another power series for f and prove that $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$, $n \in \mathbb{N}$.

Solution. We have $\frac{1}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{c_1-x} - \frac{1}{c_2-x} \right)$, where $c_1 = \frac{-1+\sqrt{5}}{2}$ and $c_2 = \frac{-1-\sqrt{5}}{2}$. So,

$$f(x) = \frac{1}{\sqrt{5}} \left(\frac{1}{c_1} \sum_{n=0}^{\infty} \left(\frac{x}{c_1} \right)^n - \frac{1}{c_2} \sum_{n=0}^{\infty} \left(\frac{x}{c_2} \right)^n \right) = \frac{1}{\sqrt{5}} \sum_{n=1}^{\infty} \left(\frac{1}{c_1^n} - \frac{1}{c_2^n} \right) x^{n-1}.$$

Note that $\frac{1}{c_1} = \frac{1+\sqrt{5}}{2}$ and $\frac{1}{c_2} = \frac{1-\sqrt{5}}{2}$, so $f(x) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right) x^{n-1}$. Comparing the coefficients of the two power series for f, we see that $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$ for all n.

14. (a) Prove that the series $\sum 2^n \sin \frac{1}{3^n x}$ converges uniformly on $[a, +\infty)$ for any a > 0.

Solution. Let a>0. We have $\frac{1}{3^n a}\longrightarrow 0$ as $n\longrightarrow \infty$, so there is k such that for all $n\ge k$, $0<\frac{1}{3^n a}<\frac{\pi}{2}$. For any $x\ge a$ we have $0<\frac{1}{3^n x}\le \frac{1}{3^n a}$, so $0<\frac{1}{3^n x}<\frac{\pi}{2}$ for all $n\ge k$. sin is increasing on the interval $\left[0,\frac{\pi}{2}\right]$, so $\sin\frac{1}{3^n x}\le\sin\frac{1}{3^n a}$, and $2^n\sin\frac{1}{3^n x}\le 2^n\sin\frac{1}{3^n a}$, for all $x\ge a$ and $n\ge k$.

The series $\sum 2^n \sin \frac{1}{3^n a}$ converges by the limit comparison test: since $\lim_{x\to 0} \frac{\sin x}{x} = 1$, we have $\lim_{n\to\infty} \left(2^n \sin \frac{1}{3^n a}\right) / \left(\frac{2^n}{3^n a}\right) = 1$ and $\sum \frac{2^n}{3^n a} = \frac{1}{a} \sum \left(\frac{2}{3}\right)^n < \infty$. Hence, $\sum 2^n \sin \frac{1}{3^n x}$ converges absolutely uniformly on $[a,\infty)$ by the M-test.

(b) By considering $\sum 2^n \sin \frac{1}{3^n x}$ for $x = \frac{2}{3^n \pi}$, show that the series doesn't converge uniformly on $(0, \infty)$.

Solution. For any n, for $x = \frac{2}{3^n \pi}$ we have $2^n \sin \frac{1}{3^n x} = 2^n \sin(\pi/2) = 2^n$, hence $\left\| 2^n \sin \frac{1}{3^n x} \right\| \ge 2^n \longrightarrow 0$.

(c) For $f(x) = \sum 2^n \sin \frac{1}{3^n x}$, x > 0, find (that is, express in the form of a series) f'.

Solution. To learn if the series for f can be differentiated term-by-term, consider the series $\sum \left(2^n \sin \frac{1}{3^n x}\right)' = \sum 2^n \cos \frac{1}{3^n x} \cdot \frac{-1}{(3^n x)^2} 3^n = -\sum \left(\frac{2}{3}\right)^n \frac{1}{x^2} \cos \frac{1}{3^n x}$. For any a > 0, for any n, for any $x \geq a$ we have $\left|\left(\frac{2}{3}\right)^n \frac{1}{x^2} \cos \frac{1}{3^n x}\right| \leq \left(\frac{2}{3}\right)^n \frac{1}{a^2}$, and $\sum \left(\frac{2}{3}\right)^n \frac{1}{a^2} < \infty$, so the series $\sum \left(\frac{2}{3}\right)^n \frac{1}{x^2} \cos \frac{1}{3^n x}$ converges uniformly on $[a, \infty)$ by M-test, so converges locally uniformly on $(0, \infty)$. Hence, $f'(x) = -\sum \left(\frac{2}{3}\right)^n \frac{1}{x^2} \cos \frac{1}{3^n x}$ on $(0, \infty)$.

15. Find $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)}$.

Solution. The series $\sum \frac{(-1)^{n-1}}{n(n+1)}$ converges absolutely (by comparison with $\sum \frac{1}{n^2}$). So, by Abel's theorem, the function $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} x^{n+1}$ is continuous on [0,1]. Since power series can be differentiated term-by-term, we have $f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \log(1+x), |x| < 1$. So, $f(x) = \int \log(1+x) = (1+x) \log(1+x) - x + C$ on (-1,1) and therefore on (-1,1]; since f(0) = 0, C = 0. Thus, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} = f(1) = 2 \log 2 - 1$.

16. (a) Show that the series $\sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{2n+1} - \frac{x^{n+1}}{2n+2}\right)$ converges to $\frac{1}{2}\log(1+x)$ locally uniformly on (-1,1), but converges to $\log 2$ at 1.

Solution. The power series $\sum \frac{x^{2n+1}}{2n+1}$ and $\sum \frac{x^{n+1}}{2n+2}$ converge locally uniformly on (-1,1), and so does their sum. Both series converge absolutely on (-1,1), so their sums can be computed in any order. So,

$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{2n+2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+2}$$

and

$$\begin{split} \sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{2n+1} - \frac{x^{n+1}}{2n+2} \right) &= \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+2} \\ &= \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \frac{1}{2} \log(1+x). \end{split}$$

At x=1 the two power series do not converge, so this argument isn't applicable. The series $\sum_{n=0}^{\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+2}\right)$ is a grouping of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$, so its sum is equal to $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = \log 2$.

(b) Why doesn't this contradict Abel's theorem?

Solution. Because this series is not a power series, – it is a sum of two power series, but not a "term-by-same-degree-term" sum.

17. (a) Prove that for every $n \in \mathbb{N}$, $\int_0^\pi x \cos(nx) dx = \frac{-2}{n^2}$ if n is odd and 0 if n is even. Solution.

$$\int_0^{\pi} x \cos(nx) \, dx = \frac{1}{n} \int_0^{\pi} x \, d \sin(nx) = \frac{1}{n} x \sin(nx) \Big|_0^{\pi} - \frac{1}{n} \int_0^{\pi} x \sin(nx) \, dx = 0 + \frac{1}{n^2} \cos(nx) \Big|_0^{\pi} = \frac{(-1)^n - 1}{n^2}.$$

(b) Prove that for every $n \in \mathbb{N}$, $f_n(x) = 1 + 2\sum_{i=1}^n \cos(ix) = \sin((n+1/2)x)/\sin(x/2)$. Prove that the function $x/\sin(x/2)$, $x \neq 0$, can be extended to 0 by continuity. Deduce that $\int_0^\pi x f_n(x) dx \longrightarrow 0$ as $n \longrightarrow \infty$. Solution. For any n,

$$2\sin(x/2)\sum_{i=1}^{n}\cos(ix) = \sum_{i=1}^{n}2\sin(x/2)\cos(ix) = \sum_{i=1}^{n}\left(\sin((i+1/2)x) - \sin((i-1/2)x)\right) = \sin((n+1/2)x) - \sin((x/2))$$

So, $2\sum_{i=1}^{n}\cos(ix) = \sin((n+1/2)x)/\sin(x/2) - 1$. As $\sin(x/2) \neq 0$ for all $x \in (0,2\pi)$, the function $g(x) = \frac{x}{\sin(x/2)}$ is continuous on $(0,2\pi)$. Since $\lim_{x\to 0} \frac{x}{\sin(x/2)} = 2\lim_{x\to 0} \frac{x/2}{\sin(x/2)} = 2$, if we define g(0) = 2 the function g is continuous in $[0,2\pi)$. By

$$\int_0^{\pi} x f_n(x) \, dx = \int_0^{\pi} x \sin((n+1/2)x) / \sin(x/2) \, dx = \int_0^{\pi} g(x) \sin((n+1/2)x) \, dx \longrightarrow 0$$

as $n \longrightarrow \infty$

(c) Combine (a) and (b) to prove that $\sum_{\text{odd } n \in \mathbb{N}} \frac{1}{n^2} = \frac{\pi^2}{8}$. Notice that $\sum_{\text{even } n \in \mathbb{N}} \frac{1}{n^2} = \frac{1}{4} \sum_{\text{all } n \in \mathbb{N}} \frac{1}{n^2}$ and deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Solution. For any n we have

$$\int_0^{\pi} x f_n(x) dx = \int_0^{\pi} x dx + 2 \sum_{i=1}^n \int_0^{\pi} x \cos(ix) dx = \frac{\pi^2}{2} - 4 \sum_{\substack{i \le n \\ i \text{ is odd}}} \frac{1}{i^2}.$$

Since $\int_0^{\pi} x f_n(x) dx \longrightarrow 0$ as $n \longrightarrow \infty$, we obtain that $\frac{\pi^2}{2} - 4 \lim_{n \to \infty} \sum_{\substack{i \le n \ i \text{ is odd}}} \frac{1}{i^2} = 0$, that is, $\sum_{\text{odd } i \in \mathbb{N}} \frac{1}{i^2} = \frac{\pi^2}{8}$. Let $s = \sum_{i=1}^{\infty} \frac{1}{i^2}$. Then

$$\sum_{\text{even } i \in \mathbb{N}} \frac{1}{i^2} = \sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{4} s.$$

Hence, $\frac{\pi^2}{8} = \sum_{\text{odd } i \in \mathbb{N}} \frac{1}{i^2} = s - \frac{1}{4}s = \frac{3}{4}s,$ and $s = \frac{\pi^2}{6}.$