Math 4181H

Solutions to Midterm 2 review problems

1. What can be said about the sequence (x_n) if it converges and $x_n \in \mathbb{Z}$ for all n?

Solution. This sequence is eventually constant: there is k such that $x_n = x_k$ for all $n \ge k$. Indeed, (x_n) is Cauchy, thus there exists k such that $|x_n - x_m| < 1$ for all $n, m \ge k$; since $x_n, x_m \in \mathbb{Z}$, this implies that $x_n = x_m$. Hence, $x_n = x_k$ for all $n \ge k$.

2. Find $\lim \frac{n^n + 3n! + 10n^{10} + 2 \cdot 3^n}{5n! + 10^n - 2n^n + 4}$.

Solution. We have

$$x_n = \frac{n^n + 3n! + 10n^{10} + 2 \cdot 3^n}{5n! + 10^n - 2n^n + 4} = \frac{1 + 3n!/n^n + 10n^{10}/n^n + 2 \cdot 3^n/n^n}{5n!/n^n + 10^n/n^n - 2 + 4/n^n}.$$

Since $\lim(3n!/n^n) = \lim(10n^{10}/n^n) = \lim(2 \cdot 3^n/n^n) = \lim(5n!/n^n) = \lim(10^n/n^n) = \lim(4/n^n) = 0$, we get that $\lim x_n = -1/2$.

3. If (x_n) is a sequence with $x_n \geq 0$ for all n and $x_n \longrightarrow a$, prove that $\sqrt{x_n} \longrightarrow \sqrt{a}$.

Solution. Let a=0. Given $\varepsilon>0$, find k such that $x_n<\varepsilon^2$ for all $n\geq k$, then $\sqrt{x_n}<\varepsilon$ for all $n\geq k$. Hence, $\sqrt{x_n}\longrightarrow 0=\sqrt{a}$.

Now assume that a > 0. For any n we have

$$\left|\sqrt{x_n} - \sqrt{a}\right| = \left|\frac{x_n - a}{\sqrt{x_n} + \sqrt{a}}\right| \le \frac{|x_n - a|}{\sqrt{a}}.$$

Since $|x_n - a| \longrightarrow 0$, $0 \le |\sqrt{x_n} - \sqrt{a}| \longrightarrow 0$ by the squeeze theorem, so $\sqrt{x_n} \longrightarrow \sqrt{a}$.

Another solution. The function $f(x) = \sqrt{x}$ is continuous (it is the inverse of the continuous function $g(x) = x^2$), so $x_n \longrightarrow a$ implies $\sqrt{x_n} = f(x_n) \longrightarrow f(a)$.

4. (a) If the sequence (x_n) diverges to ∞ and the sequence (y_n) is bounded, prove that the sequence (x_n+y_n) diverges to ∞ .

Solution. Let N be such that $|y_n| \le N$ for all n. Let $M \in \mathbb{R}$; find k such that $|x_n| > M + N$ for all $n \ge k$. Then for any $n \ge k$, $|x_n + y_n| \ge |x_n| - |y_n| > M + N - N = M$.

(b) If the sequence (x_n) converges to 0 and the sequence (y_n) is bounded, prove that the sequence (x_ny_n) converges to 0.

Solution. Let $|y_n| \le M$ for all n; then $0 \le |x_n y_n| \le M|x_n|$ for all n and $M|x_n| \longrightarrow 0$, so $x_n y_n \longrightarrow 0$ by the squeeze theorem.

5. Let (x_n) be a sequence of real numbers. For each of the following statements, if it is true, say so; if false, give an example demonstrating this:

(i) If (x_n) converges it is bounded.

Solution. True.

(ii) If (x_n) is bounded it converges.

Solution. False: the sequence $x_n = (-1)^n$, $n \in \mathbb{N}$, is bounded, but diverges.

(iii) If (x_n) is monotone it converges.

Solution. False: the sequence $x_n = n, n \in \mathbb{N}$, is increasing but diverges (to $+\infty$).

(iv) If (x_n) is monotone and bounded it converges.

Solution. True.

(v) If (x_n) diverges to ∞ it is unbounded.

Solution. True.

(vi) If (x_n) is unbounded it diverges to ∞ .

Solution. False: the sequence $(0,1,0,2,0,3,0,4,0,\ldots)$ is unbounded but doesn't diverge to ∞ .

(vii) If (x_n) is monotone and unbounded it diverges to ∞ .

Solution. True.

6. If the sequence (x_n) satisfies $1/n \le x_n \le n$ for all n, prove that $\lim \sqrt[n]{x_n} = 1$.

Solution. Both $\lim \sqrt[n]{1/n} = \lim \sqrt[n]{n} = 1$, so $\lim \sqrt[n]{x_n} = 1$ by the squeeze theorem.

7. Prove that $\lim \sqrt[n]{n!} = +\infty$.

Solution. For any M > 0, since $n!/M^n \longrightarrow +\infty$, there exists k such that $n! > M^n$ for all $n \ge k$, and so, $\sqrt[n]{n!} > M$ for all $n \ge k$.

8. Let $a \in \mathbb{R}$, let $x_1 = a$ and $x_{n+1} = x_n^2 - x_n + 1$ for all $n \in \mathbb{N}$. Prove that the sequence (x_n) converges if $0 \le a \le 1$ and diverges to $+\infty$ otherwise.

Solution. For every n we have $x_{n+1}-x_n=x_n^2-2x_n+1=(x_n-1)^2\geq 0$, so the sequence (x_n) is increasing and therefore has a limit. If this limit is $b\in\mathbb{R}$, then b satisfies $b=b^2-b+1$, so $(b-1)^2=0$, so b=1; otherwise, the limit is $+\infty$. If $0\leq x_1=a\leq 1$, then $x_1^2\leq x_1$, so $0\leq x_1\leq x_2=x_1^2-x_1+1\leq 1$, and by induction $0\leq x_n\leq 1$ for all n. Hence, (x_n) is bounded, and $\lim x_n=1$. If a<0 or a>1, then $x_2>1$, and since (x_n) increases, (x_n) cannot converge to 1. Hence, $\lim x_n=+\infty$ in this case.

9. (a) Let (x_n) and (y_n) be two sequences such that $|y_n - y_m| \le |x_n - x_m|$ for all $n, m \in \mathbb{N}$. Prove that if (x_n) converges then (y_n) also converges.

Solution. If (x_n) converges it is Cauchy. Let $\varepsilon > 0$, find k such that $|x_n - x_m| < \varepsilon$ for all $n, m \ge k$. Then also $|y_n - y_m| < \varepsilon$ for all $n, m \ge k$. This shows that (y_n) is also Cauchy and thus converges.

(b) Give an example of two sequences (x_n) and (y_n) such that $|y_{n+1} - y_n| \le |x_{n+1} - x_n|$ for all $n \in \mathbb{N}$, (x_n) converges but (y_n) diverges.

Solution. Let $(a_n) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{8}, \frac{1}{16}, \dots)$. Define $x_n = a_1 - a_2 + a_3 - a_4 + \dots \pm a_n$ and $y_n = a_1 + a_2 + a_3 + a_4 + \dots + a_n$, $n \in \mathbb{N}$. Then for every n, $|x_{n+1} - x_n| = |y_{n+1} - y_n| = a_{n+1}$, (x_n) converges and $y_n \longrightarrow +\infty$.

10. Consider the sequence $(x_n) = (\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \dots)$. For which numbers α is there a subsequence of (x_n) converging to α ? Also find $\limsup x_n$ and $\liminf x_n$.

Solution. (x_n) runs over all rational numbers in the interval (0,1). Since rational numbers are dense in \mathbb{R} , every point $a \in [0,1]$ is a limit point of (x_n) , thus for every $a \in [0,1]$ there exists a subsequence of (x_n) converging to a. Every point $b \notin [0,1]$ is not a limit point of (x_n) , therefore there is no subsequence of (x_n) converging to b. Since the maximal and the minimal limit points of (x_n) are 1 and -1 respectively, we have $\limsup x_n = 1$ and $\liminf x_n = -1$.

11. For $d \in \mathbb{N}$, construct a sequence that has exactly d limit points.

Solution. $(1, 2, 3, \dots, d, 1, 2, 3, \dots, d, 1, 2, 3, \dots, d, \dots)$.

12. (a) If $\lim x_n = a$ prove that every subsequence of (x_n) converges to a.

Solution. Let $x_n \longrightarrow a$ and let (x_{n_i}) be a subsequence of (x_n) . Let $\varepsilon > 0$. Find k such that $|x_n - a| < \varepsilon$ for all $n \ge k$. Find l such that $n_l \ge k$. Then for any $i \ge l$ we have $n_i \ge n_l \ge k$, so $|x_{n_i} - a| < \varepsilon$. Hence, $x_{n_i} \longrightarrow a$.

(b) Suppose a sequence (x_n) and $a \in \mathbb{R}$ are such that every subsequence of (x_n) has a subsequence that converges to a. Prove that $\lim x_n = a$.

Solution. I'll prove the contrapositive: Assume that (x_n) doesn't converge to a; then there exists $\varepsilon > 0$ such that there are infinitely many n such that $|x_n - a| > \varepsilon$. Let $n_1 < n_2 < \cdots$ be such that $|x_{n_i} - a| > \varepsilon$ for all i; then the subsequence (x_{n_i}) of (x_n) has no subsequence that converges to a.

13. Find $\lim (1 + 1/(2n))^n$.

Solution. For all n, $(1+1/(2n))^n = \sqrt{(1+1/(2n))^{2n}}$. The sequence $((1+1/(2n))^{2n})$ is a subsequence of the sequence $((1+1/n)^n)$ that converges to Euler's number e, so $(1+1/(2n))^{2n} \longrightarrow e$ as well. Since the function $x \mapsto \sqrt{x}$ is continuous, $\lim \sqrt{(1+1/(2n))^{2n}} = \sqrt{\lim (1+1/(2n))^{2n}} = \sqrt{e}$.

14. If the sequence (x_n) satisfies $\limsup |x_n| = 0$, prove that it converges to 0.

Solution. Since $|x_n| \ge 0$ for all n, $\liminf |x_n| \ge 0$, so $\liminf |x_n| = \limsup |x_n| = 0$, so $\lim |x_n| = 0$, so $x_n \longrightarrow 0$.

15. Let (x_n) be a sequence of positive numbers. Prove that $\limsup (x_{n+1}/x_n) \ge \limsup \sqrt[n]{x_n}$ and $\lim \inf (x_{n+1}/x_n) \le \liminf \sqrt[n]{x_n}$. If $\lim (x_{n+1}/x_n)$ exists, prove that $\lim \sqrt[n]{x_n}$ also exists.

Solution. This is simply a reformulation of Theorem 2.7.6 from Lecture notes, with x_n instead of $x_1 \cdots x_n$. But ok, let's reprove it. Let $a = \limsup(x_{n+1}/x_n)$, let b > a. Find k such that $x_{n+1}/x_n < b$ for all $n \ge k$. Then for any n > k,

$$x_n = x_k \frac{x_{k+1}}{x_k} \cdots \frac{x_n}{x_{n-1}} < x_k b^{n-k} = (x_k/b^k)b^n,$$

so $\sqrt[n]{x_n} < b \sqrt[n]{x_k/b^k}$. Hence,

$$\limsup_{n\to\infty} \sqrt[n]{x_n} \le \limsup_{n\to\infty} b \sqrt[n]{x_k/b^k} = b \lim_{n\to\infty} \sqrt[n]{x_k/b^k} = b.$$

Since this is true for every b > a, $\limsup_{n \to \infty} \sqrt[n]{x_n} \le a$.

Similarly, $\liminf \sqrt[n]{x_n} \ge \liminf (x_{n+1}/x_n)$. So,

$$\liminf (x_{n+1}/x_n) \le \liminf \sqrt[n]{x_n} \le \limsup \sqrt[n]{x_n} \le \limsup (x_{n+1}/x_n).$$

If (finite or infinite) $\lim (x_{n+1}/x_n)$ exists, then $\lim \inf (x_{n+1}/x_n) = \lim \sup (x_{n+1}/x_n)$, so $\lim \inf \sqrt[n]{x_n} = \lim \sup \sqrt[n]{x_n}$, so $\lim \sqrt[n]{x_n}$ exists (and equals $\lim (x_{n+1}/x_n)$).

16. Let $f: A \longrightarrow \mathbb{R}$ be a function, let a be a limit point of A. Prove that $\lim_{x\to a} f(x) = b$ iff for every monotone sequence (x_n) in $A \setminus \{a\}$ with $x_n \longrightarrow a$ one has $f(x_n) \longrightarrow b$.

Solution. If $\lim_{x\to a} f(x) = b$ then for every (not only monotone) sequence (x_n) in $A \setminus \{a\}$ with $x_n \longrightarrow a$ we have $f(x_n) \longrightarrow b$. Now suppose that $f(x) \not \longrightarrow b$ as $x \longrightarrow a$; then there are $\varepsilon > 0$ and a sequence (x_n) in $A \setminus \{a\}$ with $x_n \longrightarrow a$ such that $|f(x_n) - b| \ge \varepsilon$ for all n. And the sequence (x_n) has a monotone subsequence (x_{n_i}) which also converges to a and satisfies $|f(x_{n_i}) - b| \ge \varepsilon$ for all i, so that $f(x_{n_i}) \not \longrightarrow b$.

17. (a) Suppose that g and h are continuous at a and that g(a) = h(a). Define $f(x) = \begin{cases} g(x), & x \geq a \\ h(x), & x \leq a \end{cases}$. Prove that f is continuous at a.

Solution. We have $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = g(a) = f(a)$ and $\lim_{x\to a^-} f(x) = \lim_{x\to a^-} h(x) = h(a) = f(a)$. (If these limits make sense, that is, if a is a limit point of corresponding sets.) Hence, $\lim_{x\to a} f(x) = f(a)$.

18. A function $f: A \longrightarrow \mathbb{R}$ is said to be Lipschitz at a point $a \in A$ if there is C > 0 such that $|f(x) - f(a)| \le C|x - a|$ for all $x \in A$ in a neighborhood of a. Prove that if f is Lipschitz at a then f is continuous at a.

Solution. Let $\delta > 0$ be such that $|f(x) - f(a)| \le C|x - a|$ for all $x \in A$ with $|x - a| < \delta$. Given $\varepsilon > 0$, if $x \in A$ is such that $|x - a| < \min\{\delta, \varepsilon/C\}$, then $|f(x) - f(a)| \le C|x - a| < C(\varepsilon/C) = \varepsilon$.

19. (a) Prove that if f is continuous at a then so is |f|.

Solution. The function |f(x)| is the composition of f and of the continuous function $y \mapsto |y|$.

Another solution. Given $\varepsilon > 0$, find $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ when $x \in \text{Dom}(f)$, $|x - a| < \delta$, then for any such x, $||f(x)| - |f(a)|| \le |f(x) - f(a)| < \varepsilon$.

(b) Prove that if f and g are continuous at a then so are $\max\{f,g\}$ and $\min\{f,g\}$.

Solution. We have $\max\{f,g\} = \frac{1}{2}(f+g+|f-g|)$ and $\min\{f,g\} = \frac{1}{2}(f+g-|f-g|)$, so both are continuous by (a).

(c) Prove that every continuous f can be written f = g - h, where g and h are nonnegative and continuous. Solution. Put $g = \max\{f, 0\}$ and $h = -\min\{f, 0\}$, then f = g - h and both $g, h \ge 0$ and are continuous (at all points) by (b).

20. Find $\lim 2^{(1+1/n)^n}$.

Solution. $\lim_{n \to \infty} (1+1/n)^n = e$, the function $x \mapsto 2^x$ is continuous, thus $2^{(1+1/n)^n} \longrightarrow 2^e$.

21. Suppose A_n , $n \in \mathbb{N}$, are pairwise disjoint subsets of \mathbb{R} with no limit points. (That is, for any n and any $a \in \mathbb{R}$ there is $\delta > 0$ such that $(a - \delta, a + \delta) \cap A_n \setminus \{a\} = \emptyset$, and $A_n \cap A_m = \emptyset$ for any distinct n and m). Define f by $f(x) = \begin{cases} 1/n, & x \in A_n \\ 0, & x \notin A_n \text{ for all } n. \end{cases}$ Prove that $\lim_{x \to a} f(x) = 0$ for all $a \in [0,1]$. Deduce that f is discontinuous at every point of $\bigcup_{n=1}^{\infty} A_n$ and continuous at all other points of \mathbb{R} .

Solution. Let $a \in \mathbb{R}$. Let $\varepsilon > 0$. Find $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Let $\delta > 0$ be such that $(a - \delta, a + \delta) \cap (A_1 \cup \cdots \cup A_n) \setminus \{a\} = \emptyset$. Then for any $x \in (a - \delta, a + \delta) \setminus \{a\}$ we have $x \notin A_1 \cup \cdots \cup A_n$, so either f(x) = 0 or f(x) = 1/k with k > n and so, $|f(x)| < 1/n < \varepsilon$.

22. Let f be a monotone function that takes all rational values (that is, $Rng(f) \supseteq \mathbb{Q}$). Prove that f is continuous.

Solution. Since $\operatorname{Rng}(g) \supseteq \mathbb{Q}$ and \mathbb{Q} is dense in \mathbb{R} , the range of f has no "gaps" (intervals between $\operatorname{Inf}(f)$ and $\operatorname{Sup}(f)$ containing no points of $\operatorname{Rng}(f)$). Hence, f is continuous by Theorem 4.2.1 from Lecture notes. (For every limit point a of $\operatorname{Dom}(f)$, $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ (if both limits make sense) and f(a) (if f(a)

23. A function $g: \mathbb{R} \longrightarrow \mathbb{R}$ is said to be even if g(-x) = g(x) for all $x \in \mathbb{R}$ and odd if g(-x) = -g(x) for all $x \in \mathbb{R}$. Prove that every function f continuous on \mathbb{R} can be written as f = E + O, where E is a continuous even function and O is a continuous odd function.

Solution. Put $E(x) = \frac{1}{2}(f(x) + f(-x))$ and $O(x) = \frac{1}{2}(f(x) - f(-x))$, $x \in \mathbb{R}$. The functions f and f(-x) are continuous (f(-x)) is the composition of two continuous functions, $x \mapsto -x$ and f), so E and G are continuous; E is even and G is odd.

24. Let $A \subseteq \mathbb{R}$, let f be a function $A \longrightarrow \mathbb{R}$, let $a = \inf A$. Define the function $\widetilde{f}: (a, +\infty) \longrightarrow \mathbb{R}$ by $\widetilde{f}(x) = \sup\{f(z) : z \in A, z \leq x\}$. Prove that \widetilde{f} is an increasing function. If f is an increasing function, prove that \widetilde{f} is an extension of f.

Solution. For any $x, y \ge a$ we have

$$\widetilde{f}(x) = \sup\{f(z) : z \in A, \ z \le x\} \le \sup\{f(z) : z \in A, \ z \le y\} = \widetilde{f}(y),$$

so \widetilde{f} is increasing. If f is increasing, for every $x \in A$ we have $f(z) \leq f(x)$ for all $z \in A$ with $z \leq x$, so $\widetilde{f}(x) = \sup\{f(z) : z \in A, z \leq x\} = f(x)$.

- **25.** Find an integer n such that $f(x) = x^3 x + 3$ has a root in [n, n + 1].
- Solution. We have f(-2) = -8 + 2 + 3 < 0, and f(-1) = -1 + 1 + 3 > 0, so by the I.V.T. (the intermediate value theorem) there exists $x \in [-2, 1]$ such that f(x) = 0.
- **26.** Suppose that f is continuous on [a,b] and that $f(x) \in \mathbb{Q}$ for all $x \in [a,b]$. What can be said about f? Solution. It can be said that f is constant. Indeed, let $y, z \in [a,b]$, y < z, and assume that $f(y) \neq f(z)$. Since irrational numbers are dense in \mathbb{R} , there exists an irrational α between f(y) and f(z). By the intermediate value theorem there exists $x \in (y,z)$ such that $f(x) = \alpha$; but this contradicts the assumption that $f(x) \in \mathbb{Q}$ for all $x \in [a,b]$.
- **27.** Suppose f is continuous on [0,1] and $\operatorname{Rng}(f) \subseteq [0,1]$. Prove that $f(x_0) = x_0$ for some $x_0 \in [0,1]$. Solution. Let g(x) = x, $x \in [0,1]$. We have $f(0) \geq 0 = g(0)$ and $f(1) \leq 1 = g(1)$. If f(0) = g(0) or f(1) = g(1) we are done, so let's assume that f(0) > g(0) and f(1) < g(1); then there exists $x_0 \in (0,1)$ such that $f(x_0) = g(x_0) = x_0$.
- **28.** Let f be any polynomial function. Prove that there is $x_0 \in \mathbb{R}$ such that $|f(x_0)| \leq |f(x)|$ for all $x \in \mathbb{R}$. Solution. If f is constant, then any point x_0 works. If not, then $|f| \longrightarrow +\infty$ as $x \longrightarrow \pm \infty$, so such x_0 exists (as was proved in class).

29. (a) Suppose that f is continuous on an interval [a,b] and let c be any number. Prove that there is a point on the graph of f which is closest to (c,0).

Solution. Consider the function

$$\varphi(x) = [\text{the distance between } (x, f(x)) \text{ and } (c, 0)] = \sqrt{(x - c)^2 + f(x)^2},$$

on the interval [a, b]. This function is continuous on [a, b] (by the theorems about sums/products/compositions of continuous functions), so it attains its minimum at a point $x_0 \in [a, b]$.

(b) Show that this assertion is not necessarily true if [a,b] is replaced by (a,b).

Solution. I'll give a very simple example: let f(x) = 0 on (a, b) and c = b. Then for any $x \in (a, b)$ "the distance between the points (x, f(x)) and (c, 0)" equals b - x, and there is no point x on (a, b) that minimizes this distance.

(c) Show that this assertion is true if [a,b] is replaced by \mathbb{R} .

Solution. In this case the continuous function $\varphi(x)$, introduced in (a), tends to $+\infty$ as $x \to \pm \infty$ (since $f(x) \ge |x - c|$ for all x), so it attains its minimal value on \mathbb{R} .

30. Suppose that f is continuous on an interval (a,b) and $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x)$, which may be finite or $\pm\infty$. Prove that f has a maximum on all of (a,b) or a minimum on all of (a,b).

Solution. The problem has an easy solution if $c = \lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x)$ is finite $(\neq \infty)$: Define f(a) = f(b) = c, then f becomes continuous on [a, b], so attains its maximal value M and its minimal value m. If both values are taken at the endpoints, then M = m = c, so f is constant. Otherwise, f takes at least one of the values M, m at a point $x_0 \in (a, b)$.

If $\lim_{x\to a^+} f(x) = \lim_{x\to b^-} f(x)$ is infinite, this argument doesn't work. But then, if the limits are equal to $+\infty$, we know that f attains a minimal value, and if both are equal to $-\infty$, then -f attains a minimal value, so f attains a maximal value at that point.

31. Suppose that function f is continuous but not uniformly continuous on an interval [a,b). Prove that $\lim_{x\to b^-} f(x)$ does not exist or is infinite.

Solution. If $\lim_{x\to b^-} f(x) = c$ exists we may extend f to b by f(b) = c, then f becomes continuous on [a, b], and so, uniformly continuous on [a, b]. Since f is not uniformly continuous the limit doesn't exist.

32. If a function f is uniformly continuous on an interval [a,b] and on the interval [b,c], prove that f is uniformly continuous on [a,c].

Solution. Let $\varepsilon > 0$. Find $\delta_1, \delta_2 > 0$ such that for any $x, y \in [a, b]$ with $|x - y| < \delta_1$ we have $|f(x) - f(y)| < \varepsilon/2$ and for any $x, y \in [b, c]$ with $|x - y| < \delta_2$ we have $|f(x) - f(y)| < \varepsilon/2$. Put $\delta = \min\{\delta_1, \delta_2\}$. Let $x, y \in [a, c]$, $0 < y - x < \delta$. If $x, y \in [a, b]$ or $\in [b, c]$, then $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$. If $x \le b \le y$, then $|b - x| < \delta$ and $|y - b| < \delta$, so $|f(x) - f(b)| < \varepsilon/2$ and $|f(y) - f(b)| < \varepsilon/2$, thus $|f(x) - f(y)| < \varepsilon$.

- **33.** A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is said to be periodic with period a, where a is a positive real number, if f(x+a) = f(x) for all $x \in \mathbb{R}$.
- (b) Prove that every continuous periodic function is bounded and attains its maximal and minimal values.

Solution. Let f be continuous and periodic with period a. f is continuous on the interval [0, a] thus $f|_{[0,a]}$ is bounded and attains its maximal and minimal values M and m. For any $x \in \mathbb{R}$ there is $n \in \mathbb{Z}$ such that $x - na \in [0, a)$ (namely, n = [x/a]), so f(x) = f(x - na), and therefore $m \le f(x) \le M$.

(a) Prove that every continuous periodic function is uniformly continuous.

Solution. Let f be continuous and periodic with period a. The function $f|_{[0,2a]}$ is continuous and so uniformly continuous. Given $\varepsilon>0$ let $0<\delta< a$ be such that for any $x,y\in[0,2a]$ with $|x-y|<\delta$ one has $|f(x)-f(y)|<\varepsilon$. Now let $x,y\in\mathbb{R},\ 0< y-x<\delta$. Find $n\in\mathbb{Z}$ such that $0\le x-na< a$, then 0< y-na<2a, so for x'=x-na and y'=y-na we have $x',y'\in[0,2a]$ and $|x'-y'|<\delta$, so $|f(x')-f(y')|<\varepsilon$. Since f is periodic with period a, (it is easy to prove by induction that) f(x)=f(x') and f(y)=f(y'), thus $|f(x)-f(y)|<\varepsilon$.

34. If a function $f: \mathbb{R} \longrightarrow [0, +\infty)$ satisfies f(x+y) = f(x)f(y) for all x and y and is continuous at 0 prove that f is continuous (at all points).

Solution. Let $a \in \mathbb{R}$. Write f(x) = f(x - a + a) = f(x - a)f(a). Since f is continuous at 0, f(x - a) is continuous at a, thus f(x) = f(x - a)f(a) is continuous at a.