Math 4181H

Solutions to Midterm 3 review problems

1. Suppose that f is a polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with critical points -1, 1, 2, 3, 4 and corresponding values 6, 1, 2, 4, 3. Sketch the graph of f in the case n is even and in the case n is odd.

Solution. Since f' is continuous (or by Darboux's theorem) it preserves sign on every interval not containing a critical point, so, f is strictly monotone on each of the intervals $(-\infty, -1]$, [-1, 1], [1, 2], [2, 3], [3, 4], and $[4, +\infty)$. Whether f is strictly increasing or strictly decreasing on these intervals can be determined by comparing its values at the end points: decreasing on [-1, 1], and increasing on [1, 2], [2, 3], and [3, 4]. If n is even then $f(x) \longrightarrow +\infty$ for $x \longrightarrow \pm \infty$, so f is decreasing on $(-\infty, -1)$ and increasing on $(4, +\infty)$; if n is odd then $f(x) \longrightarrow -\infty$ for $x \longrightarrow -\infty$ and $f(x) \longrightarrow +\infty$ for $x \longrightarrow +\infty$, so f is increasing on both $(-\infty, -1)$ and $(4, +\infty)$.

2. Let f be a differentiable function on \mathbb{R} . If f' is odd, prove that f is even; if f' is even and f(0) = 0, prove that f is odd.

Solution. Let f' be odd; put g(x) = f(x) - f(-x), then g'(x) = f'(x) + f'(-x) = 0, so $g = c \in \mathbb{R}$, so f(-x) = f(x) + c for all x. In particular, f(0) = f(0) + c, so c = 0, and f(-x) = f(x) for all x.

Let f' be even; put g(x) = f(x) + f(-x), then g'(x) = f'(x) - f'(-x) = 0, so $g = c \in \mathbb{R}$, so f(-x) = -f(x) + c for all x. Since f(0) = 0, we have c = 0, so f(-x) = -f(x) for all x.

3. Let $f(x) = x/2 + x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Prove that f is strictly increasing at 0 but not increasing in any neighborhood of 0.

Solution. $f'(0) = \lim_{x\to 0} f(x)/x = \lim_{x\to 0} \left(1/2 + x\sin(1/x)\right) = 1/2 > 0$, so f is strictly increasing at 0.

For any $x \neq 0$, $f'(x) = 1/2 + 2x\sin(1/x) - \cos(1/x)$. When x is close to 0 (when 0 < |x| < 1/4, to be exact), $|2x\sin(1/x)| < 1/4$. So at the points $x_n = \frac{1}{\pi/2 + 2n\pi}$, $n \in \mathbb{Z}$, where $\cos(1/x) = 1$, we have $f'(x_n) < 1/2 + 1/4 - 1 = -1/4$. For every n, since f' is continuous at x_n , f' < 0 in a neighborhood of x_n , so f is decreasing at this neghborhood. (And, every neighborhood of 0 contains x_n for some n, of course.)

4. If f is convex on an open interval I and differentiable at $a \in I$, prove that $f(x) \ge f(a) + f'(a)(x-a)$ for all $x \in I$.

Solution. As we know, since f is convex, $f'(a) = f'_+(a) = \inf\left\{\frac{f(x) - f(a)}{x - a} \mid x \in I, \ x > a\right\}$, so $f'(a) \le \frac{f(x) - f(a)}{x - a}$ for all x > a, so (as x - a > 0) $f'(a)(x - a) \le f(x) - f(a)$ for such x.

Similarly, $f'(a) = f'_{-}(a) = \sup\{\frac{f(x) - f(a)}{x - a} \mid x \in I, \ x < a\}$, so $f'(a) \ge \frac{f(x) - f(a)}{x - a}$ for all x < a, so (as x - a < 0) $f'(a)(x - a) \le f(x) - f(a)$ for such x.

5. Find tan' and arctan'.

Solution. $\tan'(x) = \left(\frac{\sin}{\cos}\right)'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$. $\arctan' x = \frac{1}{\tan'(\arctan(x))} = \cos^2(\arctan x)$. Ok, if $y = \arctan x$ then $x = \tan y$. But then $\cos^2 y = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$, so $\arctan' x = \frac{1}{1 + x^2}$.

6. Find f' in terms of g and g' if

(i)
$$f(x) = g(x + g(a))$$
.

Solution. Since no word is said about a, it is assumed to be a constant. Then g(a) is also just a constant. So, f'(x) = g'(x + g(a)).

(ii)
$$f(x) = g(xg(a))$$
.

Solution. f'(x) = g'(xg(a))g(a).

(iii)
$$f(x) = g(x + g(x))$$
.

Solution. f'(x) = g'(x + g(x))(1 + g'(x)).

(iv)
$$f(x) = g(xg(x))$$
.

Solution. f'(x) = g'(xg(x))(g(x) + xg'(x)).

7. Let $f(x) = (\sin x)/x$ for $x \neq 0$ and f(0) = 1. Find f'(0) and f''(0).

Solution. $f'(0) = \lim_{x\to 0} \frac{(\sin x)/x-1}{x} = \lim_{x\to 0} \frac{\sin x-x}{x^2}$. Since $\lim_{x\to 0} (\sin x - x) = \lim_{x\to 0} x^2 = 0$ and $(x^2)' = 2x \neq 0$ if $x \neq 0$, by L'Hospital's rule $\lim_{x\to 0} \frac{\sin x-x}{x^2} = \lim_{x\to 0} \frac{\cos x-1}{2x}$ if this last limit exist. But $\lim_{x\to 0} \frac{\cos x-1}{x} = \cos' 0 = -\sin 0 = 0$, so f'(0) = 0.

We also have $f'(x) = (\cos x)/x - (\sin x)/x^2$ for all $x \neq 0$. Hence, $f''(0) = \lim_{x \to 0} \frac{(\cos x)/x - (\sin x)/x^2}{x} = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^3}$. L'Hospital's rule is, again, applicable, and we get

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x^3} = \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{3x} = \frac{-1}{3} \sin' 0 = \frac{-1}{3}.$$

- 8. Prove that it is impossible to write x = f(x)g(x) where f and g are differentiable at 0 and f(0) = g(0) = 0. Solution. We have (fg)'(0) = f'(0)g(0) + f(0)g'(0) = 0, whereas $x'|_{x=0} = 1$.
- **9.** Let $f(x) = x^3 3x + a$ for some $a \in \mathbb{R}$. Prove that f cannot have more than one root in [-1,1]. Solution. If f had two roots $a, b \in [-1.1]$, then by Rolle's theorem there would be $x \in (a,b) \subseteq (-1,1)$ such that f'(x) = 0; but $f'(x) = 3x^2 3 < 0$ for all $x \in (-1,1)$.
- **10.** If f is twice differentiable with f(0) = 0, f(1) = 1, and f'(0) = f'(1) = 0, then $|f''(x)| \ge 4$ for some $x \in (0,1)$.

Solution. Assume that |f''(x)| < 4 for all $x \in (0,1)$. Then f'(x) < f'(0) + 4x = 4x for all $x \in \left[0,\frac{1}{2}\right]$, so $f(x) < f(0) + 2x^2 = 2x^2$ for all such x, so f(1/2) < 1/2. Also, f'(x) < f'(1) + 4(1-x) = 4(1-x) for all $x \in \left[\frac{1}{2},1\right]$, so $f(x) > f(1) - 2(1-x)^2 = 1 - 2(1-x)^2$ for all such x, so f(1/2) > 1/2, contradiction.

11. If f is invertible, differentiable, satisfies $f' = f^2$ on an interval I, and $f(x) \neq 0$ for all $x \in I$, find $(f^{-1})'$, f^{-1} , and f.

Solution. For any $y \in f(I)$, $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{y^2}$, so $f^{-1}(y) = \frac{-1}{y} + c$ for some $c \in \mathbb{R}$, so $f(x) = \frac{-1}{x-c}$.

12. Prove that the function f(x) = 1/x is convex on $(0, +\infty)$ and use this to prove that for any $n \in \mathbb{N}$ and $x_1, \ldots, x_n > 0$, $\frac{x_1 + \cdots + x_n}{n} \geq \left(\frac{x_1^{-1} + \cdots + x_n^{-1}}{n}\right)^{-1}$.

Solution. f is strictly convex on $(0,+\infty)$ since $f''(x)=2/x^3$ is positive on $(0,+\infty)$. By Jensen's inequality for any $x_1,\ldots,x_n>0$, $f\left(\frac{x_1+\cdots+x_n}{n}\right)\leq \frac{f(x_1)+\cdots+f(x_n)}{n}$, that is, $\left(\frac{x_1+\cdots+x_n}{n}\right)^{-1}\leq \frac{x_1^{-1}+\cdots+x_n^{-1}}{n}$. Since f is decreasing, this implies that $f\left(\left(\frac{x_1+\cdots+x_n}{n}\right)^{-1}\right)\geq f\left(\frac{x_1^{-1}+\cdots+x_n^{-1}}{n}\right)$, that is, $\frac{x_1+\cdots+x_n}{n}\geq \left(\frac{x_1^{-1}+\cdots+x_n^{-1}}{n}\right)^{-1}$.

13. Prove that of all rectangles with given perimeter, the square has the greatest area.

Solution. Let p be the given perimeter. If a rectangle with sides x and y has perimeter p then y = p/2 - x, and the area of such a rectangle is S(x) = xy = x(p/2 - x). The function S(x) is defined on the interval [0, p/2], is positive on (0, p/2), and satisfies S(0) = S(p/2) = 0. Thus, it must have a global maximum at some point of (0, p/2). We have S'(x) = p/2 - 2x, so S'(x) = 0 iff x = p/4, hence the maximum of S is reached at this point. Thus, the area of the rectangle is maximal when, and only when, x = p/4 = y, that is, when the rectangle is a square.

14. Suppose that $f:[0,1] \longrightarrow [0,1]$ is continuous on [0,1], differentiable on (0,1), and $f'(x) \neq 1$ for all $x \in [0,1]$. Show that there is exactly one $x \in [0,1]$ such that f(x) = x.

Solution. First, there is at least one such x by the I.V.T., since for the continuous function g(x) - x we have $g(0) = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$. And if there are two points $x_1 < x_2$ for which $f(x_1) = x_1$ and $f(x_2) = x_2$, then by the M.V.T., $1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$ for some $c \in (x_1, x_2)$, which contradicts the assumption.

15. Suppose function f is continuous on $[0, +\infty)$, differentiable on $(0, +\infty)$, f(0) = 0, and f' is increasing on $(0, +\infty)$. Prove that the function g(x) = f(x)/x is increasing on $(0, +\infty)$.

Solution. Since f is differentiable on $(0, +\infty)$ g is also differentiable on $(0, +\infty)$ and $g'(x) = \frac{f'(x)x - f(x)}{x^2}$, x > 0. To prove that g is increasing it suffices to show that $g'(x) \ge 0$ for all x > 0. For any x > 0 by the M.V.T. we have f(x) = f(x) - f(0) = f'(t)x for some $t \in (0, x)$, and since f' is increasing, $f'(t) \le f'(x)$. So, $f'(x)x - f(x) = f'(x)x - f'(t)x \ge 0$, thus $g'(x) \ge 0$.

Another solution. Since f' is increasing, f is convex on $(0, +\infty)$. So, the function $g(x) = \frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0}$ is increasing. (Well, the interval $[0, +\infty)$ is not open, so we cannot apply the theory of convex functions on open intervals as such; it has to be adapted a little.)

- **16.** Let f be continuous on [a, b] and differentiable on (a, b).
- (a) Prove that if $f'(x) \ge M$ for all $x \in (a,b)$, then $f(b) \ge f(a) + M(b-a)$.

Solution. By the M.V.T., $f(b) - f(a) = f'(c)(b-a) \ge M(b-a)$ for some $c \in (a,b)$.

(b) Prove that if $f'(x) \leq M$ for all $x \in (a,b)$, then $f(b) \leq f(a) + M(b-a)$.

Solution. By the M.V.T., $f(b) - f(a) = f'(c)(b-a) \le M(b-a)$ for some $c \in (a,b)$.

17. Suppose that the functions f and g are differentiable on an interval I, $f'(x) \ge g'(x)$ for all $x \in I$ and f(a) = g(a) for some $a \in I$. Show that $f(x) \ge g(x)$ for all $x \in I$ with x > a and $f(x) \le g(x)$ for all $x \in I$ with x < a.

Solution. Consider the function h = f - g. Since h'(x) = f'(x) - g'(x) > 0 for all $x \in I$, h is strictly increasing on I. Hence, f(x) - g(x) = h(x) < h(a) = 0 for x < a and f(x) - g(x) = h(x) > h(a) = 0 for x > a.

18. Suppose f is continuous on [0,1] and differentiable on (0,1) with $f'(x) \ge M > 0$ for all $x \in [0,1]$. Show that there is an interval of length $\frac{1}{4}$ where $|f| \ge M/4$.

Solution. If $f(\frac{1}{2}) \geq 0$, then since $f' \geq M$,

$$f(x) \ge f(\frac{1}{2}) + M(x - \frac{1}{2}) \ge M(x - \frac{1}{2}) = Mx - M/2$$

for all $x \geq \frac{1}{2}$, so $f(x) \geq M/4$ for $x \in \left[\frac{3}{4}, 1\right]$. If $f\left(\frac{1}{2}\right) \leq 0$, then since $f' \geq M$,

$$f(x) \le f(\frac{1}{2}) + M(x - \frac{1}{2}) \le M(x - \frac{1}{2}) = Mx - M/2$$

for all $x \leq \frac{1}{2}$, so $f(x) \leq -M/4$ for $x \in [0, \frac{1}{4}]$.

Another solution. For any two points $x, y \in [0, 1]$ such that |f(x)|, |f(y)| < M/4 we have |f(x) - f(y)| < M/2; but since $|f(x) - f(y)| \ge M|x - y|$, we obtain that |x - y| < 1/2. So, all points $x \in [0, 1]$ with |f(x)| < M/4 are contained in a subinterval of [0, 1] of length $\le 1/2$. Hence, the set of points where $|f(x)| \ge M/4$ contains at least one interval of length $\ge 1/4$.

19. If a function f is differentiable on an interval I and has a unique critical point $a \in I$, prove that either f is monotone on I or attains the (global on I) maximum or minimum at a.

Solution. Let $I = (\alpha, \beta)$ m where α and β can be infinite. Since $f' \neq 0$ on (α, a) by Darboux's theorem f' preserves sign on (α, a) , so f is either increasing or decreasing on (α, a) ; for the same reason f is either decreasing or increasing on (a, β) . We therefore have four cases:

- if f is increasing on both (α, a) and on (a, β) , then f is increasing on I;
- if f is increasing on (α, a) and is decreasing on (a, β) , then f has maximum at a;
- if f is decreasing on (α, a) and is increasing on (a, β) , then f has minimum at a;
- if f is decreasing on both (α, a) and on (a, β) , then f is decreasing on I.
- **20.** Let $c \neq 0$ and let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentible dunction satisfying f'(x) = cf(x). Prove that $f(x) = ae^{cx}$ for some $a \in \mathbb{R}$.

Solution. Put g(x) = f(x/c); then g'(x) = f'(x/c)/c = cf(x/c)/c = f(x/c) = g(x). Hence, $g(x) = ae^x$ and $f(x) = g(cx) = ae^{cx}$ for some $a \in \mathbb{R}$.

Another solution. Let $h(x) = \frac{f(x)}{e^{cx}}$, then $h'(x) = \frac{f'(x)e^{cx} - f(x)ce^{cx}}{e^{2cx}} = \frac{cf(x)e^{cx} - f(x)ce^{cx}}{e^{2cx}} = 0$, so h = const.

21. Suppose that f is a differentiable function on $(0, +\infty)$ such that f'(x) = 1/x for all x > 0 and f(1) = 0. Prove that f(xy) = f(x) + f(y) for all x, y > 0 (and so, $f(x) = \log_a x$ for some a > 0).

Solution. Fix any y > 0 and consider the function g(x) = f(xy), x > 0. For any x > 0 we have $g'(x) = f'(xy)y = \frac{1}{xy}y = \frac{1}{x} = f'(x)$. It follows that g = f + c for some $c \in \mathbb{R}$; for x = 1 we have g(1) = f(y) and g(1) = f(1) + c = c, so c = f(y). So, f(xy) = g(x) = f(x) + f(y) for all x > 0.

- **22.** Let f be a function differentiable on $(0, +\infty)$ such that $\lim_{x \to +\infty} f'(x) = c > 0$.
- (a) Prove that $\lim_{x\to+\infty} f(x)/x = c$.

Solution. Both f and g(x)=x are defined and differentiable on $(0,+\infty)$. Since $\lim_{x\to+\infty}f'(x)>0$, there is K such that f'(x)>1 for all $x\geq K$, so f(x)>f(K)+(x-K) for all $x\geq K$, so $\lim_{x\to+\infty}f(x)=+\infty$; also $\lim_{x\to+\infty}g(x)=+\infty$. For all $x, g'(x)=1\neq 0$, and $\lim_{x\to+\infty}f'(x)/g'(x)=\lim_{x\to+\infty}f'(x)/g'(x)=$ L'Hospital's rule is applicable and gives $\lim_{x\to+\infty}f(x)/g(x)=\lim_{x\to+\infty}f'(x)/g'(x)=c$.

Another solution. Let $0 < \varepsilon < c$. Find K > 0 such that $c - \varepsilon/2 < f'(x) < c + \varepsilon/2$ for all $x \ge K$. Then for every x > K, $f(K) + (c - \varepsilon/2)x < f(x) < f(K) + (c + \varepsilon/2)x$, so $\frac{f(K)}{x} + c - \varepsilon/2 < f(x)/x < \frac{f(K)}{x} + c + \varepsilon/2$ for all x > K. Find M > K such that $|f(x)/x| < \varepsilon/2$ for all $x \ge M$. Then for all $x \ge M$, $c - \varepsilon < f(x)/x < c + \varepsilon$, so $|f(x) - c| < \varepsilon$. Hence, $\lim_{x \to +\infty} f(x)/x = c$.

(b) Does this imply that f(x) - cx is a bounded function?

Solution. No, the function $f(x) = cx + \log(1+x)$ is a counterexample: since $\log(1+x) \longrightarrow +\infty$ and $(\log(1+x))/x \longrightarrow 0$ as $x \longrightarrow +\infty$, $f(x)/x \longrightarrow c$ and $f(x) - cx \longrightarrow +\infty$.

23. (a) Give an example of a function f differentiable on $(0, +\infty)$ for which a finite $\lim_{x\to +\infty} f(x)$ exists, but $\lim_{x\to +\infty} f'(x)$ does not exist.

Solution. As f we can take a function that tends, say, at zero but oscilates faster and faster, so that the derivative doesn't stabilize.

For example, we can take $f(x) = (\sin(x^2))/x$. We have $\lim_{x\to\infty} f(x) = 0$ (since $\sin(x^2)$ is bounded and $1/x \to 0$ as $x \to \infty$), and $f'(x) = \frac{2x^2 \cos(x^2) - \sin(x^2)}{x^2} = 2\cos(x^2) - \frac{\sin(x^2)}{x^2}$ has no limit as $x \to +\infty$.

- (b) Prove that if $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to+\infty} f'(x)$ both exist and are finite, then $\lim_{x\to+\infty} f'(x) = 0$.
- Solution. If $\lim_{x\to\infty} f'(x) = b \neq 0$, say b > 0, then for some $N \in \mathbb{R}$, f'(x) > b/2 for all x > N, so f(x) > (b/2)(x-N) + f(N) for x > N, so $\lim_{x\to+\infty} f(x) = +\infty$.
- (c) Prove that if $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to+\infty} f''(x)$ both exist and are finite, then $\lim_{x\to+\infty} f''(x) = 0$.

Solution. If $\lim_{x\to +\infty} f''(x)=b\neq 0$, say b>0, then for some $N\in\mathbb{R}$, f''(x)>b/2 for all x>N, so f'(x)>(b/2)(x-N)+f'(N) for x>N, so $\lim_{x\to +\infty} f'(x)=+\infty$, so there is K such that f'(x)>1 for all x>K, so f(x)>x-N+f(K) for x>K, so $\lim_{x\to +\infty} f(x)=+\infty$.

24. (a) Prove that for any $x, y \in \mathbb{R}$ such that $\cos x, \cos y, \cos(x+y) \neq 0$, $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$.

Solution. For any $x, y \in \mathbb{R}$ for which $\cos x, \cos y, \cos(x+y) \neq 0$, we have $\tan(x+y) = \frac{\sin(x+y)}{\cos(x+y)} = \frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y - \sin x \sin y} = \frac{\tan x + \tan y}{1 - \tan x \tan y}$.

(b) $\arctan is the inverse of <math>\tan \left|_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}\right|$. Prove that $\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right)$, indicating all the necessary restrictions on x and y.

Solution. Since tan is strictly increasing on the interval $(-\pi/2,\pi/2)$ with $\lim_{x\to(-\frac{\pi}{2})^+}\tan x=-\infty$ and $\lim_{x\to(\frac{\pi}{2})^-}\tan x=+\infty$, arctan is defined on $(-\infty,+\infty)=\mathbb{R}$ and $\operatorname{Rng}(\arctan)=(-\pi/2,\pi/2)$. Let $x,y\in\mathbb{R}$; put $u=\arctan x$ and $v=\arctan y$ (then $u,v\in(-\pi/2,\pi/2)$). Then $\tan(u+v)=\frac{\tan u+\tan v}{1-\tan u\tan v}=\frac{x+y}{1-xy}$. This, indeed, implies that $u+v=\arctan(\frac{x+y}{1-xy})$, but if and only if $u+v\in(-\pi/2,\pi/2)$.

25. Prove that $\arctan \frac{1}{2} + \arctan \frac{1}{3} = \frac{\pi}{4}$.

Solution. First of all, $0 < \arctan \frac{1}{2} + \arctan \frac{1}{3} < \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$. So $\arctan \frac{1}{2} + \arctan \frac{1}{3} = \arctan \frac{1/2 + 1/3}{1 - (1/2)(1/3)} = \arctan 1 = \pi/4$.

26. If a function f is twice differentiable on \mathbb{R} and satisfies f'' = f, prove that $f(x) = ae^x + be^{-x}$ for some $a, b \in \mathbb{R}$.

Solution. Put g = f', then g' = f. Hence, (f + g)' = f + g and (f - g)' = -(f - g), so $f(x) + g(x) = ce^x$ and $f(x) - g(x) = de^{-x}$ for some $c, d \in \mathbb{R}$, so $f(x) = \frac{1}{2}(ce^x + de^{-x})$.

27. Find $(f^{-1})''(f(a))$ in terms of the derivatives of f at a.

Solution. For any x in a neighborhood of b = f(a), $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. So, by the chain rule,

$$(f^{-1})''(b) = -\frac{1}{f'(f^{-1}(b))^2}f''(f^{-1}(b))(f^{-1})'(b) = -\frac{1}{f'(a)^2}f''(a)\frac{1}{f'(a)} = \frac{-f''(a)}{f'(a)^3}.$$

28. Suppose that f is continuous on [a,b], n-times differentiable on (a,b), and that f(x) = 0 for n+1 distinct points x in [a,b]. Prove that $f^{(n)}(x) = 0$ for some x in (a,b).

Solution. Let $x_0 < x_1 < \ldots < x_n$ be the points where f = 0. By Rolle's theorem, for each $i = 1, \ldots, n$, there exists a point $y_i \in (x_{i-1}, x_i)$ such that $f'(y_i) = 0$. The function f' is (n-1)-times differentiable on (a, b) and vanishes at n different points of this interval; thus we may use induction and claim that $f^{(n)} = (f')^{(n-1)}$ vanishes at at least one point.

29. Let $n \in \mathbb{N}$, and let $f(x) = x^n$ for x > 0 and f(x) = 0 for all $x \leq 0$. Prove that f is (n-1)-times differentiable but not n-times differentiable at 0.

Solution. For any $k \le n$, $f^{(k)}(x) = n(n-1)\cdots(n-k+1)x^{n-k} = \frac{n!}{(n-k)!}x^{n-k}$ for all x > 0 and = 0 for all x < 0. If, by induction on k, we know that $f^{(k)}(0) = 0$, and k < n-1, then $f_+^{(k+1)}(0) = \lim_{x \to 0^+} f^{(k)}(x)/x = \lim_{x \to 0^+} \frac{n!}{(n-k)!}x^{n-k-1} = 0$. Also, clearly, $f_-^{(k+1)}(0) = 0$, so f is (k+1)-times differentiable at 0 with $f^{(k+1)}(0) = 0$. For k = n-1 we have $f_+^{(n)}(0) = f_+^{(k+1)}(0) = \lim_{x \to 0^+} n!$ and $f_-^{(n)}(0) = f_-^{(k+1)}(0) = 0$, so $f^{(n)}(0)$ doesn't exist.

30. (a) Let $n \in \mathbb{N}$ and $f(x) = x^{2n} \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Prove that f is n times differentiable on \mathbb{R} and that $f^{(n)}$ is discontinuous at 0.

Solution. For all $x \neq 0$, $f'(x) = 2nx^{2n-1}\sin(1/x) + x^{2n}\cos(1/x)(-1/x^2) = -x^{2n-2}\cos(1/x) + 2nx^{2n-1}\sin(1/x)$. By induction on k, for any $k \leq n$, for any $x \neq 0$, $f^{(k)}(x) = \sum_{m=2n-2k}^{2n} a_m f_{k,m}$ where $a_{2n-2k} \neq 0$, for every m, $a_m \in \mathbb{R}$, and $f_{k,m}(x) = x^m \sin(1/x)$ or $x^m \cos(1/x)$. By induction on k, for all $k \leq n$, $f^{(k)}(0) = 0$: indeed, if $f^{(k-1)}(0) = 0$, then $f^{(k)}(0) = \lim_{x\to 0} f^{(k-1)}(x)/x$, and for every $m \geq (2n-2(k-1)) \geq 2$ we have $\lim_{x\to 0} f_{k,m}(x)/x = 0$, so $\lim_{x\to 0} f^{(k-1)}(x)/x = 0$.

 $\lim_{x\to 0} f^{(n)}(x)$ doesn't exist: for all m>2n-2n=0, $\lim_{x\to 0} f_{n,m}(x)=0$, but for m=0 this limit doesn't exist.

(b) Let $n \in \mathbb{N}$ and $f(x) = x^{2n+1} \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Prove that f is n times differentiable on \mathbb{R} , and that $f^{(n)}$ is Lipschitz but not differentiable at 0.

Solution. As in (a), for any $k \leq n$, $f^{(k)}(x) = \sum_{m=2n+1-2k}^{2n+1} a_m f_{k,m}$, and $f^{(k)}(0) = 0$. $f^{(n)}$ is Lipschitz at 0 since all the functions $f_{n,m}$ with $m \geq 2n+1-2n=1$ are Lipschitz at 0. But $f^{(n+1)}(0) = \lim_{x\to 0} f^{(n)}(x)/x$ doesn't exist: for all m > 1, $\lim_{x\to 0} f_{n,m}(x)/x = 0$, but for m = 1 this limit doesn't exist.

31. If f and g are n times differentiable at a, prove by induction that $(fg)^{(n)}(a) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(a) g^{(n-k)}(a)$ (Leibniz's formula).

Solution. It would be much easier to get this formula using Taylor polynomials. But ok, induction on n: For n=0, $(fg)^{(0)}=fg=f^{(0)}g^{(0)}$ works. Assume that, for some n, if f and g are n times differentiable at a, then $(fg)^{(n)}(a)=\sum_{k=0}^n\binom{n}{k}f^{(k)}(a)g^{(n-k)}(a)$. Let f and g be (n+1)-times differentiable at a, then f and g are n-times differentiable in a neighborhood of a and so, by assumption, $(fg)^{(n)}(x)=\sum_{k=0}^n\binom{n}{k}f^{(k)}(x)g^{(n-k)}(x)$ for all x in this neighborhood. Then

$$(fg)^{(n+1)}(a) = \left(\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}\right)'(a) = \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)}(a) g^{(n-k)}(a) + f^{(k)}(a) g^{(n-k+1)}(a)\right)$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)}(a) g^{(n-k)}(a) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a) g^{(n-k+1)}(a)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} f^{(k+1)}(a) g^{(n-k)}(a) + f^{(n+1)}(a) g^{(0)}(a) + f^{0}(a) g^{(n+1)}(a) + \sum_{k=1}^{n} \binom{n}{k} f^{(k)}(a) g^{(n-k+1)}(a)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} f^{(k+1)}(a) g^{(n-k)}(a) + f^{(n+1)}(a) g^{(0)}(a) + f^{0}(a) g^{(n+1)}(a) + \sum_{k=0}^{n-1} \binom{n}{k+1} f^{(k+1)}(a) g^{(n-k)}(a)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k+1} f^{(k+1)}(a) g^{(n-k)}(a) + f^{(n+1)}(a) g^{(0)}(a) + f^{0}(a) g^{(n+1)}(a)$$

$$= \sum_{k=0}^{n-1} \binom{n+1}{k+1} f^{(k+1)}(a) g^{(n-k)}(a) + f^{(n+1)}(a) g^{(0)}(a) + f^{0}(a) g^{(n+1)}(a)$$

$$= \sum_{k=1}^{n} \binom{n+1}{k} f^{(k)}(a) g^{(n-k+1)}(a) + f^{(n+1)}(a) g^{(0)}(a) + f^{0}(a) g^{(n+1)}(a) = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)}(a) g^{(n+1-k)}(a).$$

32. Find
$$\lim_{x\to 0} \frac{\sin(x^2) - x^2}{(\cos x - 1)^3}$$
.

Solution. I'll use L'Hospital's rule three times (each time checking its applicability :) and the fact that $\lim_{x\to 0} \frac{\sin x}{x} = \sin' 0 = \cos 0 = 1$ and so, also $\lim_{x\to 0} \frac{x}{\sin x} = 1$. First,

$$\lim_{x \to 0} \frac{\sin(x^2) - x^2}{(\cos x - 1)^3} = \lim_{x \to 0} \frac{\cos(x^2)2x - 2x}{3(\cos x - 1)^2(-\sin x)} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{x}{\sin x} = \frac{-2}{3} \lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} \lim_{x \to 0} \frac{\cos(x^2) -$$

Further,

$$\lim_{x \to 0} \frac{\cos(x^2) - 1}{(\cos x - 1)^2} = \lim_{x \to 0} \frac{-\sin(x^2)2x}{2(\cos x - 1)(-\sin x)} = \lim_{x \to 0} \frac{-\sin(x^2)2x}{2(\cos x - 1)(-\sin x)} = \lim_{x \to 0} \frac{\sin(x^2)}{\cos x - 1} \lim_{x \to 0} \frac{x}{\sin x}$$

$$= \lim_{x \to 0} \frac{\sin(x^2)}{\cos x - 1}.$$

Finally,

$$\lim_{x \to 0} \frac{\sin(x^2)}{\cos x - 1} = \lim_{x \to 0} \frac{\cos(x^2)2x}{-\sin x} = \lim_{x \to 0} \cos(x^2) \lim_{x \to 0} \frac{2x}{-\sin x} = -2.$$

So,
$$\lim_{x\to 0} \frac{\sin(x^2) - x^2}{(\cos x - 1)^3} = 4/3$$
.

33. Given $c \in \mathbb{R}$, find $\lim_{x \to 0} (1 + cx)^{1/x}$.

Solution.

$$\lim_{x \to 0} (1 + cx)^{1/x} = \lim_{x \to 0} \left((1 + cx)^{1/cx} \right)^c = \left(\lim_{x \to 0} (1 + cx)^{1/cx} \right)^c$$

since the function $z \mapsto z^c$ is continuous. The function $(1+cx)^{1/cx}$ is the compsition of $x \mapsto cx$ and $y \mapsto (1+y)^{1/y}$; since (as we know) $\lim_{y\to 0} (1+y)^{1/y} = e$, we obtain that $\lim_{x\to 0} (1+cx)^{1/cx} = e$ and $\lim_{x\to 0} (1+cx)^{1/x} = e^c$.

Another solution.

$$\lim_{x \to 0} \log(1 + cx)^{1/x} = \lim_{x \to 0} \frac{\log(1 + cx)}{x} = \log(1 + cx)'|_{x=0} = c \log' 1 = c.$$

Since exp is continuous,

$$\lim_{x \to 0} (1 + cx)^{1/x} = \lim_{x \to 0} \exp(\log(1 + cx)^{1/x}) = \exp(\lim_{x \to 0} \log(1 + cx)^{1/x}) = \exp(c) = e^{c}.$$