Math 4181H

Solutions to Midterm 4 review problems

1. (a) If the function $f:[a,b] \longrightarrow \mathbb{R}$ has the property that U(f,P) = L(f,P) for every partition P of [a,b], what can be said about f?

Solution. f is constant: its supremum and infimum on [a, b] are equal.

(b) If the function $f:[a,b] \longrightarrow \mathbb{R}$ has the property that U(f,P) = L(f,P) for some partition P of [a,b], what can be said about f?

Solution. On every interval $[x_{i-1}, x_i]$ of P, the supremum and infimum of f are equal, so f is constant on $[x_{i-1}, x_i]$. Since every two adjoint intervals of the partition have nonempty intersection, this implies that f is constant on [a, b]. (If, in the definition of f, we used sup and inf on f in f in f in f would be only piecewise constant.)

2. Prove that every monotone function on a closed bounded interval is integrable.

Solution. W.l.o.g. assume that f is increasing; then f is bounded below by f(a) and above by f(b). Also assume that $f(a) \neq f(b)$, otherwise f is constant. Given $\varepsilon > 0$, put $\delta = \varepsilon/(f(b) - f(a))$. Now if $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b] with mesh $P < \delta$, then

$$\Delta(f, P) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i \le \left(\sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))\right) \delta = (f(b) - f(a)) \delta = \varepsilon.$$

3. If $\int_a^b f = p$ and $\int_a^b g = q$, find $\int_a^b \left(\int_a^b f(x)g(y) dx \right) dy$.

Solution. $\int_a^b \left(\int_a^b f(x)g(y) \, dx \right) dy = \int_a^b g(y) \left(\int_a^b f(x) \, dx \right) dy = \int_a^b g(y) p \, dy = p \int_a^b g(y) dy = p q.$

4. Let f be the Riemann function $(f(x) = \frac{1}{n} \text{ if } x = \frac{m}{n} \in \mathbb{Q} \text{ in lowest terms and } f(x) = 0 \text{ if } x \text{ is irrational}).$ Prove that f is integrable on [0,1] and $\int_0^1 f = 0$.

Solution. Let $\varepsilon > 0$. There are only finitely many points a_1, \ldots, a_k in [0,1] at which f is $\geq \varepsilon/2$. Choose a partition P for which the total length of the intervals containing at least one of a_i is less than $\varepsilon/2$; then the contribution of these intervals into Δf is $\leq 1 \cdot \varepsilon/2$, and of all other intervals is $< (\varepsilon/2) \cdot 1$. So, $\Delta(f, P) < \varepsilon$. Hence, f is integrable. Since L(f,Q) = 0 for all partitions, we have that $\int_0^1 f = L(f) = 0$.

5. Find integrable functions whose composition is not integrable.

Solution. Let f be the Riemann function on [0,1], and let g be the indicator function of $\mathbb{R} \setminus \{0\}$, g(x) = 1 if $x \neq 0$ and g(x) = 0 if x = 0. Both f and g are integrable, but $g \circ f$ is Dirichlet's function, $(g \circ f)(x) = 1$ if $x \in \mathbb{Q}$ and $(g \circ f)(x) = 0$ if $x \notin \mathbb{Q}$, which is non-integrable.

- **6.** Let f be bounded on [a, b].
- (a) For any partition P of [a,b], prove that $\Delta(|f|,P) \leq \Delta(f,P)$.

Solution. For any interval (or any set) I and any $x, y \in I$, $|f(x)| - |f(y)| \le |f(x) - f(y)|$; taking sup of this we get that $\operatorname{Var}_{I}|f| = \sup_{x,y \in I} (|f(x)| - |f(y)|) \le \sup_{x,y \in I} |f(x) - f(y)| = |\operatorname{Var}_{I} f| = \operatorname{Var}_{I} f$. So, $\Delta(|f|, P) = \sum_{i} \operatorname{Var}_{[x_{i-1}, x_i]} |f| \Delta x_i \le \sum_{i} \operatorname{Var}_{[x_{i-1}, x_i]} f \Delta x_i = \Delta(f, P)$.

(b) If f is intergable, prove that so is |f|.

Solution. Given $\varepsilon > 0$, find a partition P for which $\Delta(f, P) < \varepsilon$, then also $\Delta(|f|, P) < \varepsilon$.

Another solution. |f| is a composition of f and the (uniformly) continuous function $y \mapsto |y|$.

(c) If f and g are integrable on [a,b], prove that so are $\max(f,g)$ and $\min(f,g)$.

Solution. $\max(f,g) = \frac{1}{2}((f+g) + |f-g|)$ is integrable since f+g and so |f+g| are integrable. Similarly, integrable is $\min(f,g) = \frac{1}{2}((f+g) - |f-g|)$.

(d) Prove that f is integrable iff $f^+ = \max(f, 0)$ and $f^- = \min(f, 0)$ are integrable.

Solution. By (c), if f is integrable then f^+ and f^- are integrable. If f^+ and f^- are integrable, then $f = f^+ + f^-$ is integrable.

7. Suppose that f is locally integrable on $[0, +\infty)$ and $\lim_{x\to +\infty} f(x) = a$. Prove that $\lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t) dt = a$. Solution. Let $\varepsilon > 0$; find N such that $|f(t) - a| < \varepsilon/2$ when $t \ge N$. Then for any x > N we have

$$\begin{split} \left| \frac{1}{x} \int_0^x f(t) \, dt - a \right| &= \frac{1}{x} \left| \int_0^x f(t) \, dt - ax \right| = \frac{1}{x} \left| \int_0^N f(t) \, dt + \int_N^x f(t) \, dt - aN - a(x - N) \right| \\ &\leq \frac{1}{x} \left| \int_0^N f(t) \, dt - aN \right| + \frac{1}{x} \left| \int_N^x (f(t) - a) \, dt \right| \leq \frac{C}{x} + \frac{1}{x} \int_N^x |f(t) - a| \, dt \leq \frac{C}{x} + \frac{x - N}{x} \varepsilon / 2, \end{split}$$

where $C = \left| \int_0^N f(t) dt - aN \right|$. Since (x - N)/x < 1 and $C/x \to 0$ as $x \to +\infty$, there is M such that $\left| \frac{1}{x} \int_0^x f(t) dt - a \right| < \varepsilon$ for all x > M.

8. If f is integrable on [a,b], prove that $\int_a^b f(x) dx = \int_a^b f(b+a-x) dx$.

Solution. Let g(x) = g(b+a-x), $x \in [a,b]$. For any partition $P = \{a = x_0, x_1, \dots, x_n = b\}$ of [a,b], let $P' = \{a = b+a-x_n, b+a-x_{n-1}, \dots, b+a-x_0 = b\}$; then $P \leftrightarrow P'$ is a self-bijection of the set of all partitions of [a,b]. (It is easy to see that) for every partition P, L(g,P') = L(f,P) and U(g,P') = U(f,P), so L(g) = L(f) and U(g) = U(f), so g is integrable and $\int_a^b g = \int_a^b f$.

9. Find $\int_0^1 L(x) dx$ where L is the Cantor ladder function.

Solution. L is continuous, so, integrable. By construction, L(x) satisfies $L(1-x)=1-L(x), x\in[0,1]$. (This is true for $x\in[1/3,2/3]$; then for $x\in[1/9,2/9]$ and $x\in[7/9,8/9]$, etc., by induction; for all other $x\in[0,1]$ it is true by continuity.) So $1=\int_0^1(L(x)+L(1-x))\,dx=\int_0^1L(x)\,dx+\int_0^1L(1-x)\,dx=2\int_0^1L(x)\,dx$, so $\int_0^1L(x)\,dx=1/2$.

10. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is periodic with period a and integrable on [0, a], show that for any $b \in \mathbb{R}$, f is integrable on [b, b+a] and $\int_b^{b+a} f = \int_0^a f$.

Solution. First of all, for any $b,c \in \mathbb{R}$ with b < c, if f is integrable on an interval [b,c] then, since f(x+a) = f(x), f is integrable on [b+a,c+a] with $\int_{b+a}^{c+a} f = \int_b^c f$. It follows (by induction) that f is integrable on [b+ka,c+ka] with $\int_{b+ka}^{c+ka} f = \int_b^c f$ for all $k \in \mathbb{Z}$. In particular, f is integrable on $[-ka,ka] = \bigcup_{n=-k}^{n-1} [na,(n+1)a]$ for all $k \in \mathbb{Z}$, and so, is locally integrable on \mathbb{R} .

Now let $b \in \mathbb{R}$, $(k-1)a \le b \le ka$ with $k \in \mathbb{Z}$. Then

$$\int_{b}^{b+a} f = \int_{b}^{ka} f + \int_{ka}^{b+a} f = \int_{b-(k-1)a}^{a} f + \int_{0}^{b-(k-1)a} f = \int_{0}^{a} f.$$

11. Suppose that f is integrable on [a,b]. Prove that there is $c \in [a,b]$ such that $\int_a^c f = \int_c^b f$. Show that it is not always possible to choose c to be in (a,b).

Solution. Consider the function $H(x) = \int_a^x f - \int_x^b f$, $x \in [a,b]$. H is continuous (it is a difference of two integral functions), $H(a) = -\int_a^b f$, and $H(b) = \int_a^b f$. Thus, by the intermediate value theorem, there exists $c \in [a,b]$ such that H(c) = 0.

Take [a,b] = [-1,1] and $f(x) = \operatorname{sign} x$. Then for any $c \in [-1,1]$, $\int_{-1}^{c} f = -c - 1$ for $c \le 0$ and c - 1 for $c \ge 0$, and $\int_{c}^{1} f = c + 1$ for $c \le 0$ and -c + 1 for $c \ge 0$. Hence, $\int_{-1}^{c} f = \int_{c}^{1} f$ only if -c - 1 = c + 1 (that is, if c = -1) or c - 1 = -c + 1 (that is, if c = 1).

12. Use the Fundamental Theorem of Caluclus and Darboux's theorem to give another proof of the Intermediate Value Theorem.

Solution. If f is a continuous function on [a, b] then f has a primitive: f = F', where F is the integral function of f. By Darboux's theorem, f takes all values between f(a) and f(b).

13. Let f be a continuous function on [a,b] with the property that $\int_a^b fg = 0$ for all continuous functions g on [a,b] satisfying g(a) = g(b) = 0. Prove that f = 0.

Solution. Assume, on the way of contradiction, that $f(x_0) \neq 0$ for some $x_0 \in (a,b)$. (If $f(a) \neq 0$ or $f(b) \neq 0$, then there exists such an x_0 anyway.) W.l.o.g., let $f(x_0) > 0$; find $\delta > 0$ such that $x_0 - \delta > a$, $x_0 + \delta < b$, and $f(x) > f(x_0)/2$ for all $x \in (x_0 - \delta, x_0 + \delta)$. Construct a continuous function g such that g(x) > 0 for all $x \in (x_0 - \delta, x_0 + \delta)$ and g(x) = 0 otherwise. (Say, $g(x) = \min\{|x - y| : |y - x_0| \geq \delta\}$. Let $\tau > 0$ be such that $g(x) > g(x_0)/2$ for all $x \in [x_0 - \tau, x_0 + \tau]$. Then $\int_a^b fg = \int_{x_0 - \delta}^{x_0 + \delta} fg \geq \int_{x_0 - \tau}^{x_0 + \tau} fg > (f(x_0)g(x_0)/4)2\tau > 0$, contradiction.

14. Let the function f be integrable and ≥ 0 on an interval [a,b] and suppose there is $c \in [a,b]$ such that f is continuous at c and f(c) > 0. Prove that $\int_a^b f > 0$.

Solution. Assume that a < c < b; if c = a or b, by continuity there is $c' \in (a,b)$ such that f(c') > 0. Since f(c) > 0 and f is continuous at c, there is $\delta > 0$ such that $a \le c - \delta$, $b \ge c + \delta$, and f(x) > f(c)/2 on $[c - \delta, c + \delta]$. Then $\int_{c-\delta}^{c+\delta} f \ge (f(c)/2)2\delta > 0$. Since $f \ge 0$, $\int_a^{c-\delta} f \ge 0$ and $\int_{c+\delta}^b f \ge 0$, so $\int_a^b f = \int_a^c f + \int_c^{c+\delta} f + \int_{c+\delta}^b f > 0$.

- **15.** Let f be integrable on [a,b], let $c \in (a,b)$, and let $F(x) = \int_a^x f \, dt$, $x \in [a,b]$. Prove or disprove:
- (i) If f is differentiable at c, then F is differentiable at c.

Solution. This is true. If f is differentiable at c, then f is continuous at c, so by the F.T.C.1, F is differentiable at c (and F'(c) = f(c)).

(ii) If f is differentiable at c, then F' is continuous at c.

Solution. F does not have to be differentiable at all points of [a,b]. (But since f is integrable, it is continuous at "almost all" points of [a,b], F is differentiable at these points with F'=f, so F' restricted to the set of such points is continuous.) Actually, F', defined on the whole set where F is differentiable, is continuous at c. (Which remains true if f is continuous, not necessarily differentiable, at c.) Indeed, for any $\varepsilon > 0$ there exists a neighborhood of c where $|f(t) - f(c)| < \varepsilon$; for any distinct x, y in this neighborhood,

$$\left| \frac{F(y) - F(x)}{y - x} - f(c) \right| = \left| \frac{\int_x^y f(t) dt}{y - x} - f(c) \right| < \varepsilon,$$

so, if F is differentiable at x from this neighborhood then

$$|F'(x) - f(c)| = \left| \lim_{y \to x} \frac{F(y) - F(x)}{y - x} - f(c) \right| \le \varepsilon.$$

(iii) If f' is continuous at c, then F' is continuous at c.

Solution. Again, it is not clear whether it is assumed that f' is defined in a neighborhood of c. If it is, then f is continuous in this neighborhood, so F is differentiable and F' = f in this neighborhood, so F' is continuous in this neighborhood. Otherwise, the answer is the same as in (ii): F' is continuous at c, but doesn't have to be defined in any neighborhood of c.

16. Find $(f^{-1})'(0)$ if $f(x) = \int_0^x (1 + \sin(\sin t)) dt$.

Solution. Since the function $1 + \sin(\sin x)$ is continuous, we have $f'(x) = 1 + \sin(\sin x) > 0$ for all x, so f is strictly increasing, and has (a continuous, and so, differentiable) inverse. f(0) = 0, so $(f^{-1})'(0) = 1/f'(0) = 1$.

17. (a) Find the derivatives of $F(x) = \int_1^x \frac{1}{t} dt$ and $G(x) = \int_b^{bx} \frac{1}{t} dt$.

Solution. F and G are defined for all x > 0. Since the function 1/x is continuous, by the F.T.C., F'(x) = 1/x and G'(x) = (1/bx)(bx)' = (1/bx)b = 1/x. Hence, F = G + c for some $c \in \mathbb{R}$. For x = 1 we have F(1) = G(1) = 0, so F = G.

(b) Use (a) to prove that for a > 1 and b > 0, $\int_{1}^{a} 1/t \, dt = \int_{b}^{ab} 1/t \, dt$.

Solution. For any a > 0 and $b \neq 0$, F(a) = G(a).

(c) For a,b>1 prove that $\int_1^a \frac{dt}{t} + \int_1^b \frac{dt}{t} = \int_1^{ab} \frac{dt}{t}$.

Solution. $\int_1^a \frac{dt}{t} + \int_1^b \frac{dt}{t} = \int_1^a \frac{dt}{t} + \int_a^{ab} \frac{dt}{t} = \int_1^{ab} \frac{dt}{t}.$

18. Let $f(x) = \sin(1/x)$, $x \neq 0$, and f(0) = 0. Is the function $F(x) = \int_0^x f$ differentiable at 0? Solution. First of all, f is bounded and discontinuous only at 0, so it is locally integrable, and F(x) is defined for every $x \in \mathbb{R}$, with F(0) = 0.

Yes, F is differentiable. Indeed, let $G(x) = x^2 \cos(1/x)$, $x \neq 0$, G(0) = 0. Then G is differentiable on \mathbb{R} with $G'(x) = 2x \cos(1/x) + \sin(1/x)$ for $x \neq 0$ and G'(0) = 0. The function $h(x) = 2x \cos(1/x)$ for $x \neq 0$, h(0) = 0 is continuous on \mathbb{R} , so it has a primitive H with H(0) = 0. We then have $(G - H)'(x) = \sin(1/x) = f(x)$ for all $x \neq 0$ and also (G - H)'(0) = G'(0) - h(0) = 0 = f(0). Hence, G - H is a primitive of f. By the F.T.C., F = G - H + const, so, F is differentiable on \mathbb{R} with F' = f.

19. Prove that for every integer $n \ge 2$, $\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$. Solution. Since $\sin^2 = 1 - \cos^2$,

$$\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \sin^{n-2} x \, \sin^2 x \, dx = \int_0^{\pi/2} \sin^{n-2} x \, dx - \int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx.$$

Integrating by parts we get

$$\int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx = \int_0^{\pi/2} \sin^{n-2} x \cos x \, d \sin x = \frac{1}{n-1} \int_0^{\pi/2} \cos x \, d \sin^{n-1} x$$

$$= \frac{1}{n-1} \cos x \, \sin^{n-1} x \Big|_0^{\pi/2} - \frac{1}{n-1} \int_0^{\pi/2} \sin^{n-1} x \, d \cos x = 0 + \frac{1}{n-1} \int_0^{\pi/2} \sin^n x \, dx.$$

Hence, $\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \sin^{n-2} x \, dx - \frac{1}{n-1} \int_0^{\pi/2} \sin^n x \, dx$, so $\left(1 + \frac{1}{n-1}\right) \int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \sin^{n-2} x \, dx$, so $\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$.

20. Compute the improper integral $\int_0^1 \log x \, dx$.

Solution. $\int \log x \, dx = x \log x - \int x \, d \log x = x \log x - \int dx = x \log x - x + C$, so $\int_0^1 \log x \, dx = (\log 1 - 1) - \lim_{a \to 0^+} (a \log a - a) = -1$.

21. Prove the following version of the integration by parts for improper integrals: If f and g are locally integrable on $[a,\beta)$ (where $\beta \in \mathbb{R} \cup \{+\infty\}$) and have primitives $F = \int f$ and $G = \int g$ on $[a,\beta)$, $\lim_{x\to\beta^-} F(x)G(x)$ exists, Fg has a ptimitive, and $\int_a^\beta F(x)g(x)\,dx$ converges, then $\int_a^\beta f(x)G(x)\,dx = \lim_{x\to\beta^-} F(x)G(x) - F(a)G(a) - \int_a^\beta F(x)g(x)\,dx$.

 $Solution. \qquad \int_{a}^{\beta} f(x)G(x) \, dx \ = \ \lim_{b \to \beta^{-}} \int_{a}^{b} f(x)G(x) \, dx \ = \ \lim_{b \to \beta^{-}} \left(F(x)G(x) \Big|_{a}^{b} \ - \int_{a}^{b} F(x)g(x) \, dx \right) \ = \ \lim_{b \to \beta^{-}} \left(F(b)G(b) - F(a)G(a) \right) - \lim_{b \to \beta^{-}} \int_{a}^{b} F(x)g(x) \, dx = \lim_{b \to \beta^{-}} F(b)G(b) - F(a)G(a) - \int_{a}^{\beta} F(x)g(x) \, dx.$

22. Determine if the improper integral $\int_0^\infty \sin(x^2) dx$ converges.

Solution. $\int_0^1 \sin(x^2)$ is proper, so we focus on $\int_1^{+\infty} \sin(x^2)$. We have

$$\int \sin x^2 dx = \frac{1}{2} \int x^{-1} \sin x^2 d(x^2) = -\frac{1}{2} \int x^{-1} d\cos(x^2) = -\frac{1}{2} x^{-1} \cos(x^2) + \frac{1}{2} \int \cos(x^2) d(x^{-1})$$
$$= -\frac{1}{2} x^{-1} \cos(x^2) - \frac{1}{2} \int x^{-2} \cos(x^2) dx.$$

So.

$$\int_{1}^{+\infty} \sin(x^2) dx = \lim_{b \to +\infty} \int_{1}^{b} \sin(x^2) dx = -\frac{1}{2} \lim_{b \to +\infty} x^{-1} \cos(x^2) \Big|_{1}^{b} - \frac{1}{2} \int_{1}^{+\infty} x^{-2} \cos(x^2) dx.$$

Since $\lim_{b\to +\infty} b^{-1}\cos(b^2) = 0$ and $\int_1^{+\infty} x^{-2}\cos(x^2)dx$ converges absolutely, $\int_0^{+\infty}\sin(x^2)$ converges.

23. Using the fact that $\int_0^{+\infty} e^{-x^2} dx = \sqrt{\pi}/2$, find $(-1/2)! = \Gamma(1/2)$ and $(1/2)! = \Gamma(3/2)$.

Solution. Using the substitution $s = \sqrt{t}$ we calculate $\Gamma(1/2) = \int_0^{+\infty} e^{-t} t^{1/2-1} dt = \int_0^{+\infty} e^{-s^2} s^{-1} d(s^2) = 2 \int_0^{+\infty} e^{-s^2} ds = \sqrt{\pi}$. And then $\Gamma(3/2) = \frac{1}{2} \Gamma(1/2) = \sqrt{\pi}/2$.

24. Find the Taylor polynomial $P_{a,n,f}$ for

(a)
$$f(x) = e^{\sin x}$$
, $a = 0$, $n = 3$.

Solution. f(0) = 1; $f'(x) = e^{\sin x} \cos x$, so f'(0) = 1; $f''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x} \sin x$, so f''(0) = 1; $f'''(x) = e^{\sin x} \cos^2 x - e^{\sin x$ $e^{\sin x} \cos^3 x - e^{\sin x} \cdot 2 \cos x \sin x - e^{\sin x} \sin x - e^{\sin x} \cos x$, so f'''(0) = 0. Hence, $P_{3,0}(x) = 1 + x + \frac{x^2}{2}$.

Another solution. The 3rd Taylor polynomials for $\sin x$ at 0 is $x - \frac{x^3}{6}$ and for e^y at 0 is $1 + y + \frac{y^2}{2} + \frac{y^3}{6}$, so $P_{3,0}$ is the degree 3 truncation of

$$1 + (x - \frac{x^3}{6}) + \frac{1}{2}(x - \frac{x^3}{6})^2 + \frac{1}{6}(x - \frac{x^3}{6})^3$$

which is $1 + x - \frac{x^3}{6} + \frac{1}{2}x^2 + \frac{1}{6}x^3 = 1 + x + \frac{1}{2}x^2$.

(b)
$$f(x) = e^x$$
, $a = 1$.

Solution. For any n, $(e^x)^{(n)}|_{x=1} = e$, so $P_{n,1}(x) = \sum_{k=0}^n \frac{e}{n!} (x-1)^n$.

Another solution. For any n,

$$e^x = ee^{x-1} = e\left(\sum_{k=0}^n \frac{(x-1)^n}{n!} + o((x-1)^n)\right) = \sum_{k=0}^n e^{\frac{(x-1)^n}{n!}} + o((x-1)^n),$$

so
$$P_{n,1}(x) = \sum_{k=0}^{n} e^{\frac{(x-1)^n}{n!}}$$
.

(c)
$$f(x) = x^5 + x^3 + x$$
, $a = 0$, $n = 4$.

Solution. Since $f(x) = x + x^3 + 0(x^3)$, $P_{3,0}(x) = x + x^3$.

Another solution. f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = 6, $f^{(4)}(0) = 0$, so $P_{3,0}(x) = x + \frac{6}{6}x^3 = x + x^3$.

25. (a) For every $n \in \mathbb{N}$, find the Taylor polynomial $P_{0,4n+2,f}$ for $f(x) = \sin(x^2)$.

Solution. $P_{0,4n+2,f}(x) = P_{0,2n+1,\sin}(x^2) = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \dots + (-1)^n \frac{x^{4n+2}}{(2n+1)!}$. (Since $P_{0,2n+1,\sin}(x^2)$ has degree 4n+2 and satisfies $\sin(x^2) = P_{0,2n+1,\sin}(x^2) + o(x^{4n+2})$.)

(b) Find $f^{(k)}(0)$ for all k.

Solution. $f^{(k)}(0) = k!a_k$, where a_k is the coefficient before x^k in the Taylor polynomial for f at 0.

So,
$$f^{(k)}(0) = \begin{cases} \frac{k!}{(k/2)!} & \text{for } k = 2, 10, 18, \dots \\ -\frac{k!}{(k/2)!} & \text{for } k = 6, 14, 22, \dots \\ 0 & \text{otherwise.} \end{cases}$$

(c) In general, if $f(x) = g(x^m)$, find $f^{(k)}(0)$ in terms of the derivatives of g at 0.

Solution. Let $f(x) = g(x^m)$. If $P(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ is the Taylor polynomial of degree n for g at 0, then $g(x) = P(x) + o(x^n)$. This implies that $f(x) = P(x^m) + o((x^m)^n) = P(x^m) + o(x^{nm})$. Hence, $P(x^m) = a_0 + a_1 x^m + a_2 x^{2m} + \ldots + a_n x^{nm} \text{ is the Taylor polynomial of degree } nm \text{ for } f \text{ at } 0. \text{ We therefore have } f^{(k)}(0) = \begin{cases} k! a_{k/m} & \text{if } k \text{ is divisible by } m \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{k!}{(k/m)!} g^{(k/m)}(0) & \text{if } k \text{ is divisible by } m \\ 0 & \text{otherwise.} \end{cases}$

26. Find $P_{0,5,f}$ for

(a)
$$f(x) = e^x \sin x$$
.

Solution. $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + o(x^5)$ and $\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$, so $e^x \sin x = x + x^2 + \frac{x^3}{2} + \frac{x^4}{6} + \frac{x^5}{24} - \frac{x^3}{6} - \frac{x^4}{6} - \frac{x^5}{12} + \frac{x^5}{120} + o(x^5)$, and $P_{0,5,f}(x) = x + x^2 + \frac{x^3}{3} - \frac{x^5}{30}$.

Solution. We have $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$, so

$$\frac{1}{\cos x} = \frac{1}{1 - (\frac{x^2}{2} - \frac{x^4}{24} + o(x^5))} = 1 + \left(\frac{x^2}{2} - \frac{x^4}{24} + o(x^5)\right) + \left(\frac{x^2}{2} - o(x^3)\right)^2 = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^5)$$

and
$$\tan x = \sin x \frac{1}{\cos x} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)\left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^5)\right) = x - \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^3}{2} - \frac{x^5}{12} + \frac{5x^5}{24} + o(x^5) = x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5).$$

Hence, $P_{0.5,f}(x) = x + \frac{x^3}{2} + \frac{2x^5}{15}$.

27. Find (a) $\lim_{x\to 0} \frac{e^x - 1 - x - \frac{1}{2}x^2}{x - \sin x}$.

Solution. We have $e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$ and $\sin x = x - \frac{1}{6}x^3 + o(x^3)$. So,

$$\lim_{x \to 0} \frac{e^x - 1 - x - \frac{1}{2}x^2}{x - \sin x} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 + o(x^3)}{\frac{1}{6}x^3 - o(x^3)} = \lim_{x \to 0} \frac{\frac{1}{6} + o(x^3)/x^3}{\frac{1}{6} - o(x^3)/x^3} = 1.$$

(b) $\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$.

Solution.

$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{x^2 - (x - \frac{1}{6}x^3 + o(x^3))^2}{x^2 (x + o(x))^2} = \lim_{x \to 0} \frac{\frac{1}{3}x^4 + o(x^4)}{x^4 + o(x^4)} = \frac{1}{3}.$$

(c)
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{\sin(x^2)} \right)$$
.

Solution.

$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{\sin(x^2)} \right) = \lim_{x \to 0} \frac{\sin(x^2) - \sin^2 x}{\sin^2 x \sin(x^2)} = \lim_{x \to 0} \frac{(x^2 + o(x^4)) - (x - \frac{1}{6}x^3 + o(x^3))^2}{(x + o(x))^2 (x^2 + o(x^2))} = \lim_{x \to 0} \frac{\frac{1}{3}x^4 + o(x^4)}{x^4 + o(x^4)} = \frac{1}{3}.$$

28. Use Taylor polynomials to reprove Leibniz's identity $(fg)^{(n)}(a) = \sum_{i=0}^{n} {n \choose i} f^{(n-i)}(a) g^{(i)}(a)$.

Solution. Let f and g be n-times differentiable at a, let $P_{a,n,f}(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_n(x-a)^n$ and $P_{a,n,q}(x) = b_0 + b_1(x-a) + b_2(x-a)^2 + \cdots + b_n(x-a)^n$. Then

$$P_{a,n,fg}(x) = T_{a,n} (P_{a,n,f}(x) P_{a,n,g}(x))$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0)(x - a) + (a_0 b_2 + a_1 b_1 + a_2 b_0)(x - a)^2 + \dots + (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0)(x - a)^n$$

$$= \sum_{k=0}^{n} (\sum_{i=0}^{k} a_i b_{k-i})(x - a)^k.$$

In particular,

$$(fg)^{(n)}(a) = n! \sum_{i=0}^{n} a_i b_{n-i} = n! \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} \cdot \frac{g^{(n-i)}(a)}{(n-i)!} = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} f^{(i)}(a) g^{(n-i)}(a) = \sum_{i=0}^{n} \binom{n}{i} f^{(i)}(a) g^{(n-i)}(a).$$

29. Let $f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ Taking it for granted that f is infinitely differentiable on \mathbb{R} , find the Taylor polynomial of degree n for f at 0, and compute $f^{(n)}(0)$ for all n.

Solution. I don't see how to easily prove that f is infinitely differentiable at 0 until we study power series. We have $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^{n+1}}{(n+1)!} + o(x^{n+1})$. Hence,

$$f(x) = 1 + \frac{x}{2!} + \frac{x^2}{3!} + \ldots + \frac{x^n}{(n+1)!} + o(x^n),$$

so $1 + \frac{x}{2!} + \frac{x^2}{3!} + \ldots + \frac{x^n}{(n+1)!}$ is the *n*-th Taylor polynomial of f at 0. This implies that $f'(0) = \frac{1}{2!}$, $f''(0) = 2! \frac{1}{3!} = \frac{1}{3}$, and $f^{(n)}(0) = n! \frac{1}{(n+1)!} = \frac{1}{n+1}$ for all $n \in \mathbb{N}$.

30. Define $f(x) = \frac{\log(1+x^2)}{x^2}$ for $x \neq 0$ and f(0) = 1. Taking it for granted that f is infinitely differentiable on \mathbb{R} , find the derivative $f^{(100)}(0)$.

Solution. As we know, $\log(1+x^2) = x^2 - \frac{1}{2}x^4 + \frac{1}{3}x^6 - \dots + \frac{1}{51}x^{102} + o(x^{102})$, so $f(x) = \log(1+x^2)/x^2 = 1 - \frac{1}{2}x^2 + \frac{1}{3}x^4 - \dots + \frac{1}{51}x^{100} + o(x^{100})$. Since f is infinitely differentiable, it follows that $1 - \frac{1}{2}x^2 + \frac{1}{3}x^4 - \dots + \frac{1}{51}x^{100} + o(x^{100})$. is 100-th Taylor polynomial of f at 0. So, $f^{(100)}(0) = 100! \frac{1}{51}$

31. Using the fact that $\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{3}$, show that $\pi = 3.14159...$

Solution. We have $\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \ldots + \frac{(-1)^n x^{2n+1}}{2n+1} + R_{2n+1}(x)$, where $|R_{2n+1}(x)| < \frac{|x|^{2n+3}}{2n+3}$ (see Spivak). For $x = \frac{1}{5}$, if we want $R_{2n+1}(x)$ to be less than 10^{-7} , it suffices to take n = 3, and n = 0 works for $x = \frac{1}{239}$, so that we have $\left|4R_7\left(\frac{1}{5}\right) - R_1\left(\frac{1}{239}\right)\right| < 5 \cdot 10^{-7}$. So, with error $< 5 \cdot 10^{-7}$, we have $\pi/4 \approx 4\left(\frac{1}{5} - \frac{1}{3 \cdot 5^3} + \frac{1}{5 \cdot 5^5} + \frac{1}{7 \cdot 5^7}\right) - \frac{1}{239} \approx 0.78539792$, and so, with error $< 2 \cdot 10^{-6}$, $\pi \approx 3.141591$.