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JORDAN STRUCTURES OF STRICTLY LOWER TRIANGULAR
COMPLETIONS OF NILPOTENT MATRICES

M. Krupnik ! and A. Leibman?

‘We prove the following theorem, conjectured by Rodman and Shalom: Let Abe an nxn
nilpotent matrix with Jordan blocks of sizes ¢; > ... > ¢,. f p; > ... > p, is a sequence of positive
integers such that {p;}7_; majorizes {g;}}_,, then there exists a strictly lower triangular matrix T
such that A + T is nilpotent and p1,...,p, are the sizes of Jordan blocks of A + 7T'.

1 INTRODUCTION

A partial triangular matriz is a matrix in which the upper triangular part {including the main
diagonal) is specified, and the strictly lower triangular part is unspecified and considered as
a set of free independent variables.

All matrices in this paper are over a field F.

A completion of a partial matrix is any matrix which is obtained by replacing the
unspecified entries with elements from F. A matrix completion problem is a problem of
finding all completions with specific properties of a given partial matrix.

Various matrix completion problems for partial triangular matrices have been stud-
iedin [1, 3, 5,6, 7,8, 10, 11, 12], including the problems concerning ranks, eigenvalues, Jordan
forms, singular values, as well as applications to controllability of linear systems.

In [1, 11] the problem of the existence of a strictly lower triangular completion
with given characteristic polynomial of the completed matrix has been completely solved.
Generally speaking, such a completion is not unique (if exists). In [7], the possible geometric
multiplicities of the eigenvalues of a completed matrix was studied. The Jordan forms of
strictly lower triangular completions were investigated for different particular cases in 8, 10].

In this paper it is more convenient for us to consider strictly lower triangular
completions as additive perturbations of full (not partial) matrices. The goal of this paper
is to prove a proposition describing the general sufficient condition on Jordan structures of
strictly lower triangular additive perturbations of a nilpotent matrix. These conditions were
conjectured by Rodman and Shalom in [10].

Given two nonincreasing sequences of positive integers {p;};_, and {¢;}5=1, the
sequence {p;}1_, majorizes {g;}5_; if 7 < s, Xi pi > 2§'=1 gifort=1,...,r,and ¥I_, p; =
Y5=1 ¢ (see, for example, [9]).

1This work is part of a doctoral thesis, written under the supervision of Prof. A.Berman. It was supported
by the Fund for Promotion of Research at the Technion.
2Supported by British Technion Society.
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THEOREM 1.1 (Conjecture of Rodman and Shalom) Let A be an n x n nilpotent
matriz and let ¢ > ... > q, be the sizes of its Jordan blocks. If {p;};_; is a nonincreasing
sequence of positive integers majorizing {g;}i-,, then there exists a strictly lower triangular
matriz T such that A+ T is nilpotent with Jordan blocks of sizes py,...,p,.

Acknowledgement. We would like to acknowledge a very helpful and constructive referee’s
report.

2 ADMISSIBLE CORRECTIONS AND TRANSFORMATIONS

Two matrices A, A are called upper equivalent if there exist a nondegenerate lower triangular
matrix S and a strictly lower triangular matrix R such that A’ = S~'AS + R (see [4]).

Given a nilpotent matrix A, we will look for a strictly lower triangular matrix T
with a specified Jordan structure of A + T. But we may do it not for A itself, but for any
nilpotent matrix from the class of matrices upper equivalent to A. Indeed, let A’ be upper
equivalent to A4, namely A’ = S7'AS + R, where S is a nondegenerate lower triangular
matrix and R is strictly lower triangular. Then the matrix 7' = S~I1T'S — R is strictly lower
triangular and

A+T =5 A+T)S

has the same Jordan structure as A+ T'.

We will call the transformation S™'AS of a matrix 4 for a nondegenerate lower
triangular matrix S an admissible transformation of A. The additive perturbation A + T of
A with a strictly lower triangular matrix T' will be called an admissible correction of A.

Let p > g be two elements of a (nonincreasing) sequence of positive integers.
Replacing p by p+ 1 and g by ¢ — 1 (or deleting g in the case ¢ = 1) we obtain, after
ordering its elements, a new nonincreasing sequence of positive numbers, which majorizes
the previous one. It is easy to see that any sequence majorizing a given one can be obtained
by a finite number of such operations.

Now, we may reformulate Theorem 1.1 in the following way:

THEOREM 2.1 Let A be a nilpotent square matriz, let p,q, by, ..., ks, withp > q,
be the sizes of the Jordan blocks of A. Then a nilpotent matriz whose Jordan blocks have
sizes p+1,q—1,h1,..., ks (orp+1,hy,... hy in the case g = 1) can be obtained from A by
a sequence of admissible transformations and admissible corrections.

Let A = [a, ]2 ;- be an n X n nilpotent matrix. We fix an n-dimensional vector
space L over F and an ordered basis V' = {v1,...,v,} in L with n(v) being the ordinal
number in V of v € V (we do not suppose n(vi) = k). We denote by V() the I-th element
of Vi n(V(l))=1,1=1,...,n. Then we can associate with A an endomorphism A of L:

A(V (m)) = gammz), m=1 . ..n

(A acts on the rows of coordinates of vectors of L from the right). When we reconstruct A
from A, we have to follow the ordering V(1), ..., V{(n) of the elements of V; another ordering
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gives a matrix obtained from A by a permutation of its rows and the same permutation of
its columns.
Now, admissible corrections of A correspond to changes of A of the form

A'(V(m)) = A(V(m)) + Z emiV(1), m=1,...,n,
I<m
for some &,,; € F. Admissible transformations of A correspond to changes of the basis V' of
the form

Vi(m) =Y AmiV(1), A #0, m=1,...,m;

i<m

we will call such changes admissible changes of basis.

PROPOSITION 2.2 Let Ly C Ly C ... C Ly, =L, dimLy = k, k= 1,...,n,
be a sequence of linear subspaces of L. Then there exists an admissible change of basis
Vi V= {v],...,v.} such that v; € Ly, k = 1,...,n. In particular, for any 1 < k < n,
the set {vy,..., v} is a basis of L.

PROOF: It is enough to prove that there exists an admissible change of basis
V — V' such that v] € Ly; then the statement of the proposition can be obtained by the
factorization L/L, and an induction process on dim L.
Let w = Y7, BV(l) € L, and let k = max{l : B, # 0}. Then the admissible
change of basis
vy =V'(k)=u, V)=V, I#F,
gives the desired result. g

COROLLARY 2.3 Let Y be a c-dimensional linear space over F,letB:Y — L
be a linear embedding. Let U = {u1,...,u.} be abasis of Y and let 1 < dy < ... <d. <n
be arbitrary integers. Then there exists an admissible change of basis V > V' = {vy,...,v.}
in L such that

B(’UJ,,) = ’U‘Iii + Z ,Bi,jv;-, 1= 1,...,¢
i<d;
for some f;; € F.
PROOF: Denote wy, = B(u;), ¢ = 1,...,¢, and complete the set {wgy,,...,wq}

up to a basis {ws,...,w,} of L. Put L; = Span (wq,...,wg), k =1,...,n. Using Proposi-
tion 2.2 finishes the proof. m

Under the notation of Corollary 2.3, the matrix B = [8;;],_; . . of B in the bases

j=1,m
U, taken in the ordering u4,...,u., and V', taken in the ordering vi, ..., v}, has the form
d s dp
l l l
* * 1 0 0
* * 10 0

(2.1)
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(weput Big; =1, B;; =0for y > di, 1 = 1,...,p). (B acts on the rows of coordinates of
vectors in L' from the right.) We will call the matrix of the form (2.1) a (dy, ..., d,)-lower-
triangular mairiz.

Now we are ready to describe a relatively simple form to which any nilpotent
matrix can be reduced by admissible changes of basis. Let A be nilpotent, let A be the
corresponding endomorphism of a space L with an ordered basis V. Let » € N be such that
AT =0, A" #£0.

Denote Ly = Ker A* C L; then

LiCLyC...CL. =L, and A(Lpy1) C L, k=1,...,7 — 1.

Using Proposition 2.2, we may assume that, for e, = dim L, k = 1,...,r, the set
{v1,...,%, } 15 a basis of L,. For every k = 1,...,r, denote

Ck = €k — €p—1,

E_ .
U] = Ve 45y J = 1,000, Cy
— k k
‘/k - {’Ul,...,’UCk ’
Y = Span V.

For k=1,...,r — 1 denote
Ay = Projy, 0 Alz,,,,

where Projy, is the projection of L onto Y agreed with V. Then, for any 1 < &k < r,
¢ = dim Y} is the number of the Jordan blocks of A whose sizes are not less than k,
Ly=Y:®..®Y,and, fork=1,...,r — 1, A(Ysy1) C Lt and A, is an embedding of Y3,

into Y.

r 1 r—1 1 1

Hence, in the basis V taken in the ordering 7, ..., v, , 01", .. ;v %, .. 01, 0
A has the form
Or Ar—l *
Or—l AT—2
Or—2 e s (22)
A
0,
where O, k =1,...,7, 1s the ¢, X ¢, zero matrix and Ag, k=1,...,r — 1, is the ¢z11 X ¢
matrix of rank ¢gy; which corresponds to Aj.
We will now describe some possible forms of the matrices A, k = 1,...,r — 1,
which they can take under further admissible transformations. Let, for £ = 1,...,r — 1,
one have some integers 1 < d¥ < ... < d* < ¢. Using Corollary 2.3, one can make an

CE41

admissible change of the basis V,_; of ¥,_; such that
Ara(0]) = o774+ Yo oo i=1,.. ¢, ofj' €F,

- -1
i<d;

that is the matrix A, ; of A,_; in this new basis is (d} ', ..., d.!)-lower-triangular.
In the same way, one can make an admissible change of the basis V,_, in Y,_,
such that the matrix A,_; of A._5 in the basis V,_; of Y._; and the new basis V,_, is
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(a2, .. ,d; % )-lower-triangular. Continuing this process, we obtain as a result a new basis
V={v j= 1,...,ck, k=1,...,7} such that

k41 - k
Ai(vFt) %—Zoe,J vi, i=1,...,¢cq1, 0;; € F,
j<df

for every k=1,...,7 — 1. We have proved the following theorem:

THEOREM 2.4 Let A be a square nilpotent matriz, let r € N be such that A™ = 0,
A1 £ 0, and let ¢ for k = 1,...,7 be the number of the Jordan blocks of A whose sizes
are not less than k. Then, for any integers 1 < d¥ < ... < dfk“ <c, k=1,...,7 1,
there ezists an admissible transformation of A which has, up to a permuiation of its rows
and columns, the form (2.2) with every Ax, k = 1,...,7 — 1, being (d’{,...,d’:k“)—lower-
triangular.

3 GRAPHS OF MATRICES

Let A = [am|p, ;=1 be an n X n matrix over F; we now associate with A its graph T'(A). It
is a directed graph whose set of vertices V = {v1,...,v,} is ordered; we denote by n(v) the
ordinal number in V of » € V. Two vertices u,w € V of I'( A) are joined by a directed edge
(or an arrow) u—w if and only if Qu)m(w) 7 0; the weight of the arrow is nfu)n(w) € F-
Now the statement “there is an arrow w>w” means just that Unfu)m(w) = @ 7# 0. We say
that the arrow ur—w passes from u to w.

It is clear that the graph I'(A4) is simply another description of the matrix 4,
and A can be easily reconstructed from I'(A). Moreover, we can consider the set V of the
vertices of the graph I'(A) as an ordered basis of an n dimensional space. Now, admissible
transformations of A lead to some transformations of I'(A); hence, we may regard changes
of the basis V as transformations of I'(4).

In Section 4 we shall use admissible changes of basis of the form v’ = au + fw,
w,w € V with n(u) > n(w). In terms of graph I'(A4), this change deals with only arrows

passing from and to u and w. Namely, if v*>u and v>w are the arrows passing from a
vertex v € V to w and w, then in the new graph I'(4’) obtained from I'(4) by the admissible

. . A e p=Ag/a
change of basis v’ = au + fw, there will be arrows v+>u' and v — w (for convenience, in

this paragraph we allow to arrows to have zero weights). If the arrows passing from u and

1 C‘HLE ¢

w to a vertex z € V in I'(A) are w2z and w2z, in T'(A’) there will be v+5'z and w2

(see Fig. 1).

The admissible corrections of A correspond in the graph I'(A) to changing the
weight of arrows passing from vertices with greater numbers to vertices with smaller ones:
for u,w € V satisfying n(x) > n(w) we may change the weight « of the arrow ww, up to
deleting or adding this arrow.

To make the geometric form of the graph I'(A) more clear, we embed its vertices
into the Cartesian product R, x N,. The first coordinate ¢ = z(v) of this coordinate system
will be called the position, the second coordinate y = y(v) will be called the level We are
completely free to make geometric transformations of I'(A), that is to change the coordinates
of vertices of I'(4) (we will say also that we move the vertices); it is clear that geometric
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Figure 1: An admissible change of basis: ¢’ = au + fw

transformations of a graph preserve the matrix corresponding to the graph. The embedded
graph will be still called the graph of A and denoted by T'(A4).
We will say that:
a vertex u € V is on the level k (or, simple saying, of level k) if y(u) = k;
a vertex u € V is higher (lower) than a vertex w € V if y(u) > y(w) (respectively,
y(w) < y(w));
a vertex u 5 on the left (on the right) of w if o(u) < x(w) (respectively, z(u) > z(w));
a vertex u is above (under) w if z(u) = z(w) and y(u) = y(w) + 1 (respectively, y(u) =
y(w) — 1);
an arrow u—w goes down if y(u) > y(w); goes directly down if y(u) > y(w) and z(u) =
z(w); goes down-left if y(u) > y(w) and z(u) > z(w).
If U is a subset of V, we denote by #U the number of elements of U, and by U,
the subset of U consisting of the vertices of level k: U = {u € U : y(u) = k}. For U W C V,
the arrows passing from U to W are the arrows u—w withu e U, w € W.
Let us give now some more technical definitions. We say that T'(4) is downward
if all its arrows go down (Fig. 2). Note that such a graph contains no loops.

Figure 2: A downward graph

Let U,W C V. We say that UAW is properly downward if the arrows passing
from U to W go down, for any k > 1 the arrows passing from U1 to Wy go down-left and
for every u € Up,y there is w € Wy, under u with an arrow u—w.

We say that the graph I'(A) is properly downward if VAV is properly downward.
In particular, the properly downward graph is downward and under every its vertex whose
level is greater than one there is another vertex (Fig. 3).

The column is a subset of V' consisting of all vertices having the same position. In
the properly downward graph the levels of the elements of a column pass over all positive

integers from 1 up to the height of the column. If b is a column, bx denotes the element of b
of level k.
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Figure 3: A properly downward graph

For U CV,let By = {n(u) : u € U}. For U,W C V, we denote
AUW) = [am,l]mEEU;
ey
AU, W)isa (#U) x (#W) submatrix of A.
Given U,W C V, we say that UAW is nondegenerately downward if

rank A(U, W) = #U.

The graph I'(A) is nondegenerately downward if it is downward and V4 AV, is nondegen-
erately downward for any & > 1.

LEMMA 3.1 LetU C Viyy, W C V, for some k > 1. If UAW is properly down-
ward then it is nondegenerately downward. In particular, if T'(A) is properly downward then
it is nondegenerately downward.

PROOF: Let W’ be the set of the elements of W located under elements of U.
Then, up to a permutation of its rows and columns, the square submatrix A(U, W') of

A(U,W) is upper triangular with all nonzero elements on its main diagonal. Hence, the
rank of A(U, W) is equal to its size #£U. g

To start the proof of Theorem 2.1 we need two more statements, the first of which
is trivial and the second being a simple corollary of the results of the previous section.

PROPOSITION 3.2 If the graph T'(A) of @ matriz A is downward then A is nilpo-
tent. If T'(A) is nondegenerately downward then the number of Jordan blocks of A of size k

is (#W) — (#Vis1)-

PROPOSITION 3.3 Let A be a nilpotent matriz, let the sizes of its Jordan blocks
be hy, ...,k in an arbitrary ordering. Then there evist an admissible transformation A' of A
and an embedding of I'(A’) into R x N such that T'(A4’) is properly downward and the heights
of its columns from the left to the right are hy, ..., hs.

PROOF: Let r = max{h;, I = 1,...,t}. For every k = 1,...,r, let ¢, be the
number of the Jordan blocks of A whose sizes are not less than %, and, for 1 <k <r—1, let
k. .. < lfk“ be all the integers satisfying hlf > k+ 1. We define a set of positive integers
{d¥, i=1,...,¢001, k=1,...,7 — 1} by

dE=#{1eN: 1<I<IE b >k}
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Using Theorem 2.4, we make an admissible change of basis in L in order to obtain
a basis {v;-‘, J=1,...,c, k=1,...,7} in which A has the form (2.2) such that every A,
E=1,...,7—1,is (dF,... ,del)—lower-triangular. For k = 1,...,r, we place v, .. .,vfk
onto the level k from the left to the right in such a way that v;‘,; isunder v¥*' i =1,..., cry1,

k=1,...,7 — 1. The obtained graph satisfies the demands of the proposition. m

4 PROOF OF RODMAN-SHALOM CONJECTURE

In Section 2 we gave several propositions, which allowed us to prove Theorem 2.1 for matrices
of some special form. In Section 3 we associated with every nilpotent matrix an ordered
directed multigraph, embedded in R x N, which contains all the information on matrix A.
This graph has an especially suitable structure for the matrices constructed in Section 2. We
interpreted admissible corrections and admissible transformations of a matrix in terms of the
corresponding graph (we will call such transformations admissible corrections and admissible
transformations of the graph, respectively). Now we are ready to reformulate Theorem 2.1
in terms of graphs.

Let A be a nilpotent matrix and let I'(A) be a corresponding graph. According
to Proposition 3.3, we may and will assume that, up to some admissible corrections of A,
T'{A) is properly downward and that the heights of its columns from the left to the right are
g, ki, . ke, D

THEOREM 4.1 There ezists a sequence of admissible corrections, admissible trans-
formations and geomelric transformations of I'(A) giving as a result a nondegenerately
downward graph T'(A") such that the heights of its columns from the left to the right are
g—1,h1,...,hs,p+1 (orhq,...,hy,p+1, in the case g=1).

Let A’ be the matrix corresponding to the graph I'(A’) from the statement of
Theorem 4.1. Then A’ is obtained from A by a sequence of admissible corrections and
admissible transformations. Fnrthemore, from Proposition 3.2 follows that A’ is nilpotent
with the sizes of Jordan blocks ¢ — 1,h1,..., Ay, p+1 (or hy,..., ks, p+ 1 in the case ¢ = 1).
It follows that Theorem 4.1 implies Theorem 2.1 and, so, gives an affirmative answer to
Conjecture of Rodman and Shalom (Theorem 1.1).

In order to prove Theorem 4.1 we will first describe a geometric transformation of
the graph I'(A) of a matrix A with a marked vertex s, which will be called the insertion of
s into the right column of T'(A). The insertion can be done under the assumption that I'(4)
satisfies some conditions of insertion, which will be formulated now.

Let I'(A) be a graph, let s be a vertex of ['(A) of level k£ € N and let D be the set
of all vertices of T'(A) excluding s. Let there be a vertex under every vertex v € D, let a be
the extreme right column of I'(A) and let p > k — 1 be its height. Denote H = D \ a.

The conditions of insertion of s into a. If I'(A) does not contain the vertex az (that
is, if p = k — 1), then I'(4) is downward. If T'(A) does contain aj (that is, if p > k), then
T'(A) contains an arrow ax—s, and the graph obtained from I'(A) by deleting this arrow is
downward. In addition, D; 4 i}Di for1 <i<k—2and H; U{s}iD;ﬁl are nondegenerately

downward, and D; ¢ AD; fori> kis properly downward.



Krupnik and Leibman 467

In the assumption that the conditions of insertion are satisfied, the insertion of s
into the column a is the following procedure: the level of each a;, i > k, increases by 1 and
s is placed into a on the level k (Fig. 4).

Figure 4: The insertion of s into the column a

LEMMA 4.2 Let I'(A) satisfy the conditions of insertion. Then the graph T'(A')
obtained from T'(A) by the insertion of s into a is nondegenerately downward.

Note that the insertion of s into a is a geometric transformation of I'(A4) and, hence, the
matrix A’ corresponding to I'(A’) coincides with A.

PROOF: Let V' be the set of vertices of T'(A'). We have V) = D;for 1 <¢ <k—1
andi>p+ 1, V) = He U{s}, VV = H;U{a;1} fork+1<i<p+1.

Since for k < 4 < p there are no arrows passing from Hyyy to ai (as Diyy ﬁ»Di is
properly downward), I'(A’) is downward. We also have:

1. V;'+1—>V' for1 <7 <k—2andi > p+1 is the same as D;yq AD; and, so, nondegenerately
dowanIard

2. V/=V/_, is nondegenerately downward by the assumptions.

3. Hpyt iI>Hk is properly downward and, so, is nondegenerately downward by Lemma 3.1;if
p > k, there are no arrows passing from a; to Hi and there is an arrow ak»—'}as. Therefore,

the submatrix A(Heyi U{ar}, He U{s}) of matrix 4 has (up to a permutation of its rows
and columns) the following form:

( A(Hkgl,Hk) ; )

and, so, its rank is equal to rank A(Hyyq, Hx) +1 = #(H;e U{s}). This shows that V/ , =
Hyiq U{ak}in’ = Hp U{s} is nondegenerately downward.

4. The same argument shows that V|, = H;y4 U{ai}ﬂV-’ =H;U{a;1}, k+1<i<p+1,
and V; , = Hp+2—>V+1 = Hp1 U{a,} are nondegenerately downward.

Thus, V;’H—aV; is nondegenerately downward for any i > 1 and, so, I(4’) is non-
degenerately downwa.rd. u

PROOF OF THEOREM 4.1: We denote by a the right column of T(4), by s
the upper vertex of the left column of T(A), D =V \ {s} and H = D \ a.
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We will describe now a finite algorithm, consisting of admissible transformations,
admissible corrections and some geometric transformations of I'(A), giving as a result a new
graph, satisfying the conditions of insertion of the vertex s into the right column a. We will
move s to the right (in a level) and up (from a level to the next one). At the same time
all other vertices of A, up to changes of notation, will stay at their former places. The final
insertion will increment the height of the right column of I'(A) and the obtained graph will
have the heights of columns ¢ — 1,k4,..., A, p + 1 and be nondegenerately downward by
Lemma 4.2. These imply the desired result.

At every step of the algorithm, the following conditions will hold:

I. T(A) is downward;
I1. 5 is on the left of a;
and, furtermore, when s is on the level &, & < p,
ITL Di+1£>D,- is properly downward for any t > 1,1 # k — 1;
IV. Dy AD: U{s} is properly downward;
V. Dy U{s}ka_l depends on a parameter A, € F in such a way that
a) when A, =0, Dkka_l is properly downward and the arrows passing from s to Dy_;
go down-left;
b) when X # 0, Hy U{s}>Di_ is nondegenerately downward.

At the beginning, s is on the level g and the conditions I-V hold independently of the value
of a formal parameter A,.

Step 1. The movement of s to the right in a level.

Let s be on the level k& for some ¢ < k < p. Assume that on the right of s there is the vertex
by, of a column b # a. We have one of the following two cases:

1. The height of b is k, or the arrow bg1—s does not exist. We move s to the right of b;
this does not fail the conditions I-V (Fig. 5).

§§ bk’l

o, Op, —_—

Op,

(X3

Figure 5: The movement of s to the right, case 1

2. There is an arrow bk_,_lng)s. Since Dk+1ﬁ>Dk is assumed to be properly downward, there
is also some bp4q bﬂbk.

a) Let n(s) < n(b;). We make an admissible change of basis: b, = 8b; + as. In the obtained
graph T'(A’) there does not already exist the arrow bey1+—s and there is bk+1»i>b§¢. Move s to
the right of b, (Fig. 6).

The conditions I-V hold for I'(A4’): it is downward, s is on the left of a. We will
use the notation D;, H;, 7 =1,...,r, for subsets of ['(A4’) as well. Doing the above change of
basis, we dealt with the vertices of the level & of I'(4) only and, so, D;y, A.D; for ¢ Zk—1,k
remain properly downward. All the arrows passing from Dy to D U{s} go still down-left,
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bki
b= os+ph !
—_— Ob, @
By
©p,

k-1

Figure 6: The movement of s to the right, case 2a

and for any v € Dy, there is an arrow passing to Dy and going directly down, that is
Dy i’>Dk U{s} and D4y AI»D;, are properly downward.

We have two cases, depending on the value of Ag. If DA Dy is propetrly down-
ward (in the case A = 0), then all the arrows passing from b} and s to Dj_; in I'(4’) hold
going down-left, and there is an arrow, namely bkflbk_l, passing from b}, directly down, that
is Dy Dy, is properly downward. If Hj U{s}ka_l is nondegenerately downward (in
the case Ay # 0), then H, U{s}ﬂDk_l is nondegenerately downward as well, because our
changes of basis dealt only with Hj|J{s} and, so, could not change the rank of the matrix
A(H U{s}, Di_1).

b) Let n(s) > n(bx). We make an admissible change of basis: s” = 8b;+ as, change notation:
. = s", 8’ = bx, and move s’ and b;, to the right in such a way that &) will be under bs.;

(Fig. 7). Using the argument involved in a), we see that the conditions I-V hold for the
obtained graph.

Figure 7: The movement of s to the right, case 2b

We repeat Step 1 till there are not any vertices of level & between s and a;. Let
us keep notation I'(A) and A for the obtained graph and the corresponding matrix.

Step 2. The insertion of s into a, or moving of s to the next level.

We have one of the following three cases:

1. n(ax) > n(s).

We add a new arrow axr>s, € € F, € # 0, (this is an admissible correction) and put s # 0.
The conditions of insertion of s into a hold; the insertion finishes the proof.

2. n(ar) < n(s) and either p = k, or there is an arrow a,i+s.

We lift s onto the level k + 1, add an arrow s+>ag, ¢ € F, € # 0, (this is an admissible
correction) and put Ay = 0. In the obtained graph I'(A'), Dki;Dk_l is properly downward
and the only arrow passing from s to Dy is s—>ay. The submatrix A'(Hyq1 U{s}, He U{ar})
of the matrix A’ corresponding to I'(A’) has, up to a permutation of its rows and columuns,
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the form

( A(Hk;gl,Hk) : )

and, since Hk+1£»Hk is properly downward, A(Hp41, Hy) is of full rank, rank A(Hpy1, He) =
#Hyyy. Hence, rank A'(Hepr U{s}, HU{ax}) = #Hiys + 1 and, so, Hiy U{s}5D; =

Hj. U{ax} is nondegenerately downward. So, we may insert s into a and finish the proof.
3. n(ar) < n(s), p > k and the arrow agy1—s does not exist.

We put Ay = 0, add the arrow sAﬁilak (the value of Agy; will be determinated during the
further steps of the algorithm), and move s onto the level k + 1 to the left of Dy.y. The

conditions I-V hold: the obtained graph I'(A’) remains downward, Dki;Dk_l is properly
downward. In case Agy; = 0 there are no arrows passing from s to Dg. In case Agy1 # 0 the

. LA .
only arrow passing from s to Dy is s ¥ ay, so, the matrix A’(Hyy1 U{s}, Di) has the form

(A(Hk+1,Hk) % )

0 Akt

and, hence, Hy1 U{s}-‘i»Dk is nondegenerately downward. Now, we restore the old notation
I'(A) and A for T'(A’) and A’ respectively, and repeat the procedure of movement to the
right, Step 1 of the algorithm, for s being on thelevel k. +1. g
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