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Abstract

We compute the exact lower bounds for some averages arising in
ergodic theory. In particular, we prove that for any measure preserv-
ing system (X,B, µ, T ) with µ(X) < ∞, any A ∈ B and any N ∈ N,
1
N

∑N−1
n=0 µ(A ∩ T−nA) ≥

√

µ(A)2 + (µ(X)− µ(A))2 + µ(A)− µ(X).

1. Lower bound for the averages
1

N

N−1∑

n=0

µ(A ∩ T−nA)

1.1. Let T be a measure preserving transformation of a probability measure space (X,B, µ).
Let 0 < a ≤ 1; it follows from the mean ergodic theorem that if A is a subset of X with

µ(A) ≥ a, then the limit of the averages

1

N

N−1∑

n=0

µ(A ∩ T−nA) (1.1)

exists and satisfies lim
N→∞

1
N

∑N−1
n=0 µ(A ∩ T−nA) ≥ a2 ([Kh]). This does not apriori guar-

antee that there is a uniform positive lower bound of the averages (1.1) for all A with

µ(A) ≥ a, that is, that there is c = c(a) > 0 such that for any X, T and A with µ(A) ≥ a

one has 1
N

∑N−1
n=0 µ(A∩T−nA) ≥ b for all N ∈ N. Indeed, for the more general expressions

1
N−M

∑N−1
n=M µ(A ∩ T−nA) one still has lim

N−M→∞

1
N−M

∑N−1
n=M µ(A ∩ T−nA) ≥ a2 ([Kh]),

while, if a < 1
2 , for arbitrarily large N −M one may have 1

N−M

∑N−1
n=M µ(A ∩ T−nA) = 0

for appropriately chosen T , A and M . (For example, take X = [0, 1], A = [0, a] with a < 1
2

and T (x) = (x + α)mod 1 with α ≪ 1 − 2a; then there are large intervals of n for which

µ(A ∩ T−nA) = ∅.)
The existence of positive lower bound for averages of the form 1

N

∑N−1
n=0 µ(A∩T−n

1 A∩
. . .∩T−n

k A), where T1, . . . , Tk are pairwise commuting measure preserving transformations

of X, is proven in [BHMP]. We compute the exact lower bound of the averages (1.1):
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1.2. Theorem. Let 0 ≤ a ≤ 1.

(a) For any probability measure preserving system (X,B, µ, T ) and any A∈ B with µ(A) ≥ a

one has 1
N

∑N−1
n=0 µ(A ∩ T−nA) ≥

√

a2 + (1− a)2 + a− 1 for all N ∈ N.

(b) For any δ > 0 there exist a measure preserving system (X,B, µ, T ), A ∈ B with

µ(A) = a and N ∈ N such that 1
N

∑N−1
n=0 µ(A ∩ T−nA) <

√

a2 + (1− a)2 + a− 1 + δ.

Proof. Passing, if needed, to the natural extension of (X,B, µ, T ) ([R]), we may assume

that T is invertible. We may also assume that X is finite with µ(B) = |B|/|X|, B ∈ B. In-
deed, given A ∈ B, µ(A) = a, for any N ∈ N and ε > 0 there exists a finite set X̂, a permu-

tation T̂ of X̂ and a set Â ⊆ X̂ such that
∣
∣ |Â|

|X̂|
−a

∣
∣ < ε and

∣
∣ |Â∩T̂−nÂ|

|X̂|
− µ(A ∩ T−nA)

∣
∣ < ε

for all n ≤ N . (One can deduce this fact from the Rohlin lemma, or prove it directly.)

Thus, we arrive at the following problem: given a permutation T of a finite set X, a subset

A of X with |A| = a|X| and N ∈ N, we have to estimate 1
N |X|

∑N−1
n=0 |A ∩ T−nA|.

First, let us assume that T is a cyclic permutation: X = {1, . . . ,m} and Tx =

(xmodm) + 1. Let A ⊆ {1, . . . ,m} with |A| = b = ma. For any k ∈ N, if we replace X by

{1, . . . , km} and A by A ∪ (A+m) ∪ . . . ∪ (A+ (k − 1)m):

A

1 m
7→

A

1 m

A+m

2m
. . .

A+ (k − )m

km

then the quantities |A|/|X| and |A ∩ T−nA|/|X|, n ∈ Z, do not change. Hence, we may

assume that m is arbitrarily large. Fix ε > 0 and assume that N/m < ε. Under this

assumption, we will estimate from below the sum

S =

N−1∑

n=0

∣
∣A ∩ (A− n)

∣
∣ =

∑

x∈A

∣
∣A ∩ [x, x+N − 1]

∣
∣,

which does not exceed
∑N−1

n=0 |A ∩ T−nA|.
To make the argument more transparent, let us reformulate the problem in combi-

natorial language. Assume that b archers are positioned at the points 1, 2, . . . ,m of the

real line, no more than one archer at a point: there is an archer at x iff x ∈ A. Every

archer threatens himself and all other archers positioned at his right at the distance < N .

(That is, the archer located at a point x threatens the archers located in the interval

[x, x+N − 1].)

1

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

↓ ↓ ↓ ↓ ↓ ↓

⌢/
8
A

x

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

x N 1

8)–
A

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

m

8)–
A

The question is: how should one position the archers in order to minimize “the total

number of threats”

S =
∑

R is an archer

the number of archers threatened by R,
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and what is the minimal value of S?

We start with an arbitrary positioning of archers

1

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

N

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

m

8)–
A

and will “improve” it by moving the archers in such a way that S will not increase.

Step 1. Assume that b1 archers are located at the points of the interval [1, N ]. If b1 > 0,

we move these archers to the left end of the interval [1, N ]; clearly, this does not increase

S. As a result, all (integer) points in the interval [1, b1] become occupied (we will say

that [1, b1] is full), while all points in the interval [b1 +1, N ] become free (we will say that

[b1 + 1, N ] is empty):

8)–
A

1

8)–
A

8)–
A

8)–
A

8)–
A

b1

←−
N

8)–
A

8)–
A

8)–
A

b1 N

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

m

8)–
A

Step 2. Now, if an archer R is located at a point x ∈ [N, b1 +N − 1] and the point x+1 is

not occupied, then R can be moved to x + 1. Indeed, after this relocation R is no longer

threatened by the archer located at x − N + 1 ∈ [1, b1] and so, the number of archers

threatening R decreases by 1. On the other hand, the number of archers threatened by R

increases by at most 1 and, hence, the total number of threats S does not increase. This

allows us to move all archers located in [N + 1, b1 +N ] to the right end of this interval:

8)–
A

1

8)–
A

8)–
A

8)–
A

8)–
A

b1 N

−→
b1 d1

8)–
A

8)–
A

8)–
A

b1 N

8)–
A

8)–
A

8)–
A

8)–
A

b1 d1 N

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

m

8)–
A

Assume that there are c1 archers in [N +1, b1+N ] (possibly, c1 = 0) and put d1 = N − c1;

then after this rearrangement the interval [N +1, b1 + d1] becomes empty and the interval

[b1 + d1 + 1, b1 +N ] becomes full. Note that c1 ≤ b1 and so, b1 + d1 ≥ N .

Step 3. We shift the archers located in [b1 + N + 1, b1 + N + d1] to the left end of this

interval; we can do this since, at any position, these archers are threatened by all archers

from the interval [b1 + d1 + 1, b1 +N ] and are not threatened by the archers from [1, b1]:

8)–
A

1

8)–
A

8)–
A

8)–
A

8)–
A

b1 b1 d1

8)–
A

8)–
A

8)–
A

b1 N

8)–
A

8)–
A

8)–
A

8)–
A

b1 d1 b2

←−
b1 d1 N

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

m

8)–
A

Assume that the interval [b1+N +1, b1+N +d1] contains e1 archers and put b2 = c1+ e1.

Then, after this rearrangement, the interval [b1 + d1 + 1, b1 + d1 + b2] becomes full and

the interval [b1 + d1 + b2 + 1, b1 + d1 + N ] becomes empty. Note that b2 ≥ c1 and so,

d1 + b2 ≥ d1 + c1 = N .
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We repeat Steps 2 and 3 starting at the point b1 + d1 + 1 instead of 1, and obtain an

empty interval [b1 + d1 + b2 + 1, b1 + d1 + b2 + d2] and a full interval [b1 + d1 + b2 + d2 +

1, b1 + d1 + b2 + d2 + b3]. And so on, until we reach the last archer. In the process of the

last application of Step 2 some archers will possibly be forced to cross the boundary of

the interval [1,m] and move to the interval [m + 1,m′] with m′ ≤ m + N . The resulting

configuration will represent an alternating sequence of full/empty intervals of lengths,

respectively, b1, d1, . . . , bk−1, dk−1, bk, where bi, di satisfy 0 ≤ bi ≤ N for i = 1, . . . , k;

0 ≤ di ≤ N , bi + di ≥ N and di + bi+1 ≥ N for i = 1, . . . , k − 1; b1 + . . . + bk = b and

d1 + . . .+ dk−1 = m′ − b.

1

8)–
A

8)–
A

8)–
A

8)–
A

︸ ︷︷ ︸

b1

8)–
A
︸ ︷︷ ︸

d1

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

︸ ︷︷ ︸

b2

8)–
A
︸ ︷︷ ︸

d2

8)–
A . . . 8)–

A
︸ ︷︷ ︸

dk−1

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

︸ ︷︷ ︸

bk
m′

8)–
A

In this situation, the first (from the left) archer of the i-th group of archers threatens all

bi members of this group, the next one threatens bi − 1 archers, and so on. In addition,

the last archer of the i-th group threatens N − di − 1 members of the (i+1)-st group, the

next-to-last archer threatens N − di − 2 archers of the (i+ 1)-st group, and so on. Hence,

the number of threats coming from the members of the i-th group is

(
bi+(bi−1

)
+ . . .+1)+

(
(N −di−1)+(N −di−2)+ . . .+1

)
= bi(bi+1)

2 + (N−di)(N−di−1)
2 .

The total number of threats S is, therefore,

S =

k∑

i=1

bi(bi + 1)

2
+

k−1∑

i=1

(N − di)(N − di − 1)

2

=
1

2

k∑

i=1

b2i +
1

2

k−1∑

i=1

(N − di)
2 +

1

2

k∑

i=1

bi −
1

2

k−1∑

i=1

(N − di)

≥ 1

2k

( k∑

i=1

bi
)2

+
1

2(k − 1)

(k−1∑

i=1

(N − di)
)2

+
1

2

k−1∑

i=1

(bi + di −N)

≥ 1

2k
b2 +

1

2k

(
(k − 1)N −m′ + b

)2
=

1

2k

(
b2 + (kN −m′′ + b)2

)
,

(1.2)

where m′′ = M ′+N . Considering the right hand part of (1.2) as a function of k, one finds

that its minimum is reached when k =

√
b2+(m′′−b)2

N and equals

N
√

b2 + (m′′ − b)2 −N(m′′ − b) = mN
(
√

a2 + (m
′′

m − a)2 + a− m′′

m

)
.

Since 1 < m′′

m ≤ m+2N
m < 1 + 2ε and ε can be taken arbitrarily small, we have S ≥

mN
(√

a2 + (1− a)2 + a− 1
)
. (Returning to the archers, we see that, if we ignore the fact

that k, b/k and m/k must be integers, the “safest” configuration is the following one: the

b archers form k =

√
b2+(m−b)2

N equal groups with equal distances between the groups:

8)–
A

1

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A

8)–
A . . . 8)–

A
8)–
A

8)–
A

8)–
A

8)–
A

m
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For this configuration S = N
√

b2 + (m− b)2 −N(m− b).)

We obtain, therefore, that in the case T is a cyclic permutation,

1

N

N−1∑

n=0

|A ∩ T−nA| ≥ 1

N

N−1∑

n=0

|A ∩ (A− n)| = 1
N S ≥ m

(√

a2 + (1− a)2 + a− 1
)
.

Now let T be an arbitrary permutation of an m-element set X. Let X = X1∪ . . .∪Xl

be the partition of X into the union of disjoint cycles of T and let mj = |Xj |, j = 1, . . . , l.

Let A ⊆ X, |A| = b, Aj = A ∩Xj and aj = |Aj |/|Xj |, j = 1, . . . , l. Then for any N ∈ N

we have

1

N

N−1∑

n=0

|A ∩ T−nA| = 1

N

l∑

j=1

N−1∑

n=0

|Aj ∩ T−nAj | ≥
l∑

j=1

mj

(
√

a2j + (1− aj)2 + aj − 1
)
.

Since the function ϕ(a) =
√

a2 + (1− a)2+a−1 is convex, the conditionsm1+. . .+ml = m

and 1
m (a1m1 + . . .+ alml) = a imply

∑l
j=1 mjϕ(aj) ≥ mϕ(a). Hence,

1

N

N−1∑

n=0

|A ∩ T−nA| ≥ m
(√

a2 + (1− a)2 + a− 1
)

and

1

N

N−1∑

n=0

µ(A ∩ T−nA) =
1

mN

N−1∑

n=0

|A ∩ T−nA| ≥
√

a2 + (1− a)2 + a− 1.

To prove part (b) of the theorem, we take X = [0, 1], A = [0, a] and T (x) = (x+ 1
m )

mod 1 with m to be specified later. We may assume that a is rational and, moreover, that

a = b
m , b ∈ N. Then for m− b ≤ N ≤ m we have

1

N

N−1∑

n=0

µ(A ∩ T−nA) =
a

mN

(b(b+ 1)

2
+

(N −m+ b)(N −m+ b− 1)

2

)

=
1

2y

(
a(a+ 1

m ) + (y + a− 1)(y + a− 1− 1
m )

)
,

(1.3)

where we put y = N/m. By taking m large enough we may make (1.3) to be less

then 1
2y

(
a2 + (y + a − 1)2

)
+ δ

2 for all y ∈ [0, 1]. For y =
√

a2 + (1− a)2 one has
1
2y

(
a2 + (y + a− 1)2

)
=

√

a2 + (1− a)2 + a− 1. Therefore, choosingN andm so that y =
N
m is sufficiently close to

√

a2 + (1− a)2, we get 1
2y

(
a2 +(y+ a− 1)2

)
<

√

a2 + (1− a)2 +

a− 1 + δ
2 and so, 1

N

∑N−1
n=0 µ(A ∩ T−nA) <

√

a2 + (1− a)2 + a− 1 + δ.
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1.3. Given a > 0, a positive lower bound also exists for the averages 1
N

∑N−1
n=0

∫
fTnf dµ

where f is a nonnegative function with
∫
f dµ = a:

Theorem. Let a > 0.

(a) For any probability measure preserving system (X,B, µ, T ) and any nonnegative inte-

grable function f on X with
∫
f dµ ≥ a one has 1

N

∑N−1
n=0

∫
fTnf dµ ≥ a2

2 for all N ∈ N.

(b) For any δ > 0 there exist a measure preserving system (X,B, µ, T ), a measurable

function f on X with
∫
f dµ = a and N ∈ N such that 1

N

∑N−1
n=0

∫
fTnf dµ < a2

2 + δ.

Proof. Fix N ∈ N. Again, we may replace our system by a finite one and assume that T

is a permutation of a finite set X, |X| = m, and that f takes on only integer values. We

have to estimate the sum
∑N−1

n=0

∑

x∈X f(x)f(Tnx), where f(x), x ∈ X, are nonnegative

integers satisfying
∑

x∈X f(x) = am.

First, let T be a cyclic permutation: X = {1, . . . ,m}, Tx = (xmodm) + 1. Then the

problem is equivalent to the following one: b = am archers are positioned at the points

1, . . . ,m, f(x) archers at a point x. An archer located at x threatens the archers located

in the interval [x, x+N − 1], totally
∑N−1

n=0 f(x+ n) archers. We have to estimate

S =

N−1∑

n=0

m∑

x=1

f(x)f(x+ n) =

m∑

x=1

f(x)

N−1∑

n=0

f(x+ n) =

m∑

x=1

f(x)
∑

r=1

(N−1∑

n=0

f(x+ n)
)

=
∑

R is an archer

(the number of archers threatened by R).

Having replaced X = {1, . . . ,m} by {1, . . . , Nm} and extended f to {1, . . . , Nm}
by f(x) = f(x − m) for x > m, we may assume that m is divisible by N . Let us

subdivide {1, . . . ,m} into m
N intervals of length N . Let bi, i = 1, . . . , m

N , be the number of

archers located in the i-th interval. Fix i and enumerate the archers of the i-th interval

in succession from the left to the right. Then the first archer threatens all bi archers in

the interval, the second archer threatens at least bi − 1 archers, etc. The total number of

threats coming from the archers located in the i-th interval (to the archers in the same

interval) is ≥ bi(bi+1)
2 ≥ b2i

2 . Hence, the total number of threats S satisfies

S ≥
m/N
∑

i=1

b2i
2
≥ N

2m

(m/N∑

i=1

bi
)2

=
Nb2

2m
.

We therefore have 1
N

∑N−1
n=0

∑

x∈X f(x)f(Tnx) ≥ 1
N S ≥ b2

2m .

Now let T be an arbitrary permutation of anm-element setX. LetX = X1∪. . .∪Xl be

the partition ofX into the union of disjoint cycles of T , letmj = |Xj | and bj =
∑

x∈Xj
f(x),

j = 1, . . . , l. We have

1

N

N−1∑

n=0

∑

x∈X

f(x)f(Tnx) =
1

N

l∑

j=1

N−1∑

n=0

∑

x∈Xj

f(x)f(Tnx) ≥
l∑

j=1

b2j
2mj

. (1.4)
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Under the conditions m1 + . . .+ml = m and b1 + . . .+ bl = ma, the minimal value of the

right hand side of (1.4) is reached when b1
m1

= . . . = bl
ml

= a and equals 1
2ma2. Hence,

1

N

N−1∑

n=0

∫

fTnf dµ =
1

Nm

N−1∑

n=0

∑

x∈X

f(x)f(Tnx) ≥ a2

2
.

To prove part (b) of the theorem, take f to be a
c 1A, where A is a set of measure c > 0

in X. By Theorem 1.2, for appropriately chosen X, A, T and N we have

1

N

N−1∑

n=0

µ(A ∩ T−nA) <
√

c2 + (1− c)2 + c− 1 +
δc2

2a2
,

and so,

1

N

N−1∑

n=0

∫

fTnf dµ =
1

N

N−1∑

n=0

(a

c

)2

µ(A ∩ T−nA) <
(a

c

)2(√

c2 + (1− c)2 + c− 1
)
+

δ

2
.

Since lim
c→0

a2

c2

(√

c2 + (1− c)2 + c− 1
)
= a2

2 , we have 1
N

∑N−1
n=0

∫
fTnf dµ < a2

2 + δ when c

is small enough.

2. Lower bounds for some non-conventional ergodic averages

2.1. Let T1, . . . , Tk be pairwise commuting measure preserving transformations of a proba-

bility measure space (X,B, µ) and let A be a set of positive measure in X. Let us consider

the averages

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ
( ⋂

S⊆{1,...,k}

(∏

i∈S

T−ni
i A

))

=
1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ
(
A ∩ T−n1

1 A ∩ T−n2
2 A ∩ . . . ∩ T−n1

1 . . . T−nk

k A
)
.

(2.1)

The convergence of (2.1) as N1, . . . , Nk →∞ is known only in the case T1 = . . . = Tk for

k = 2 (due to V. Bergelson) and k = 3 (B. Host and B. Kra).

2.2. If T1, . . . , Tk do not commute the limit of the averages (2.1) may not exist:
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Example. Let a measure preserving transformation P of a probability measure space

(Y,D, ν) and a set B ∈ D with ν(B) = a, a 6= 0, 1, be such that ν
(
B ∩ P−n(B)

)
=

a2 for all n > 0. Let S ⊆ N with 1 6∈ S; define Pn = P if n ∈ S and Pn = IdY
otherwise. Take (X,B, µ) = (Y,D, ν)N, A = B×Y ×Y × . . . and define T1, T2:X −→ X by

T1(y1, y2, . . .) = (P1y1, P2y2, . . .) and T2(y1, y2, . . .) = (y2, y3, . . .). Then for any n1, n2 ≥ 1

one has µ
(
A ∩ T−n1

1 A ∩ T−n2
2 A ∩ T−n1

1 T−n2
2 A

)
= a3 if n2 ∈ S and = a2 if n2 6∈ S.

Therefore, if S is such that the density d(S) = lim
N→∞

1
N

∣
∣S ∩ [1, N ]

∣
∣ is not defined, then

lim
N1,N2→∞

1
N1N2

∑N1−1
n1=0

∑N2−1
n2=0 µ

(
A ∩ T−n1

1 A ∩ T−n2
2 A ∩ T−n1

1 T−n2
2 A

)
does not exist.

2.3. Nevertheless, a positive lower bound of the averages (2.1) exists even for noncom-

muting T1, . . . , Tk. Put ϕ(a) =
√

a2 + (1− a)2 + a− 1, ϕ1 = ϕ and ϕk(a) = ϕ
(
ϕk−1(a)

)
,

k = 2, 3, . . ..

Theorem. Let T1, . . . , Tk be measure preserving transformations of a probability measure

space (X,B, µ) and let A ∈ B, µ(A) = a. Then for any N1, . . . , Nk ∈ N

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ
( ⋂

S⊆{1,...,k}

(∏

i∈S

T−ni
i A

))

≥ ϕk(a). (2.2)

Proof. We use induction on k; the case k = 1 is Theorem 1.2. For all n1, . . . , nk−1 ∈ Z+

define An1,...,nk−1
=

⋂

S⊆{1,...,k−1}

(∏

i∈S T−ni
i A

)
and an1,...,nk−1

= µ(An1,...,nk−1
).

Fix N1, . . . , Nk. By induction hypothesis we have

1

N1 . . . Nk−1

N1−1∑

n1=0

. . .

Nk−1−1
∑

nk−1=0

an1,...,nk−1
≥ ϕk−1(a). (2.3)

The left hand part of (2.2) equals

1

N1 . . . Nk−1

N1−1∑

n1=0

. . .

Nk−1−1
∑

nk−1=0

( 1

Nk

Nk−1∑

nk=0

µ(An1,...,nk−1
∩ T−nkAn1,...,nk−1

)
)

By Theorem 1.2, for any n1, . . . , nk−1 one has
1
Nk

∑Nk−1
nk=0 µ(An1,...,nk−1

∩T−nkAn1,...,nk−1
) ≥

ϕ(an1,...,nk−1
). Since ϕ is a convex increasing function on [0, 1], taking into account (2.3)

we get

1

N1 . . . Nk−1

N1−1∑

n1=0

. . .

Nk−1−1
∑

nk−1=0

ϕ(an1,...,nk−1
) ≥ ϕ

( 1

N1 . . . Nk−1

N1−1∑

n1=0

. . .

Nk−1−1
∑

nk−1=0

an1,...,nk−1

)

≥ ϕ
(
ϕk−1(a)

)
= ϕk(a).
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2.4. We now pass to the averages

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ(A ∩ T−n1
1 A ∩ . . . ∩ T−nk

k A) (2.4)

Theorem. Let T1, . . . , Tk be (not necessarily commuting) measure preserving transforma-

tions of a probability measure space (X,B, µ). For any A ∈ B, µ(A) = a,

lim
N1,...,Nk→∞

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ(A ∩ T−n1
1 A ∩ . . . ∩ T−nk

k A)

exists and is not less than ak+1.

Proof. We have

lim
N1,...,Nk→∞

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ(A ∩ T−n1
1 A ∩ . . . ∩ T−nk

k A)

= lim
N1,...,Nk→∞

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

∫

X

1A · Tn1
1 (1A) · . . . · Tnk

k (1A) dµ

=

∫

X

1A ·
(

lim
N1→∞

1
N1

N1−1∑

n=0
Tn
1 (1A)

)
· . . . ·

(
lim

Nk→∞

1
Nk

Nk−1∑

n=0
Tn
k (1A)

)
dµ =

∫

A

f1 . . . fk dµ,

where fi = lim
N→∞

1
N

∑N−1
n=0 Tn

i (1A), i = 1, . . . , k.

2.5. Lemma. Let T be a measure preserving transformation of a probability measure

space (X,B, µ), let A ∈ B, µ(A) > 0, and let f = lim
N→∞

1
N

∑N−1
n=0 Tn(1A). Then 0 ≤ f ≤ 1,

f(x) 6= 0 for almost all x ∈ A and
∫

A
dµ
f ≤ 1.

Proof. Without loss of generality we may assume that (X,B, µ) is a Lebesgue space. Let

π:X −→ Y , µ =
∫

Y
µy dν be the ergodic decomposition of µ and let B =

{
y ∈ Y

∣
∣ µy(A) >

0
}
. For almost every y ∈ Y we have lim

N→∞

1
N

∑N−1
n=0 Tn(1A) = µy(A) in L1(X,µy) and so,

f |π−1(y)
= µy(A). Therefore,

µ
({

x ∈ A
∣
∣ f(x) = 0

})
= µ

(
A \ π−1(B)

)
≤

∫

Y \B

µy(A) dν = 0

and
∫

A

dµ

f
=

∫

B

(∫

A

dµy

f

)

dν =

∫

B

µy(A)

µy(A)
dν = ν(B) ≤ 1.
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2.6. We have, therefore, to determine the minimum of F =
∫

A
f1 . . . fk dµ under the

conditions fi|A > 0 and
∫

A
dµ
fi

= 1, i = 1, . . . , k. We pass to a finite model: A = {1, . . . ,m}
and fi(j) = xi,j > 0, j = 1, . . . ,m, with

∑m
j=1

1
xi,j

= 1, i = 1, . . . , k. We have to minimize

the function F (x1,1, . . . , xk,m) =
∑m

j=1 x1,j . . . xk,j . At a point of extremum of F it must

be gradF ∈ Span
{
grad

(∑m
j=1

1
x1,j

)
, . . . , grad

(∑m
j=1

1
xk,j

)}
, that is, for some c1, . . . , ck ∈ R,

x1,j ...xk,j

xi,j
= ci

x2
i,j

for i = 1, . . . , k, j = 1, . . . ,m. This implies xi,1 = . . . = xi,m, i = 1, . . . , k,

that is, f1, . . . , fk are constant on A. Hence, the minimum of F is attained when f1|A =

. . . = fk|A = a and equals akµ(A) = ak+1.

2.7. The same proof works for the uniform version of Theorem 2.4:

Theorem. For any measure preserving transformations T1, . . . , Tk of a probability measure

space (X,B, µ) and any A ∈ B, µ(A) = a,

lim
N1−M1,...,Nk−Mk→∞

1

(N1 −M1) . . . (Nk −Mk)

N1−1∑

n1=M1

. . .

Nk−1∑

nk=Mk

µ(A∩T−n1
1 A∩ . . .∩T−nk

k A)

exists and is not less than ak+1.

2.8. A lower bound for the averages (2.4) (which is not exact, of course) can be taken from

Theorem 2.3:

Corollary of Theorem 2.3. Let T1, . . . , Tk be measure preserving transformations of a

measure space (X,B, µ) and let A ∈ B, µ(A) = a. Then for any N1, . . . , Nk ∈ N

1

N1 . . . Nk

N1−1∑

n1=0

. . .

Nk−1∑

nk=0

µ
(
A ∩ T−n1

1 A ∩ . . . ∩ T−nk

k A
)
≥ ϕk(a).

2.9. Acknowledgment. I thank V. Bergelson for stimulating discussions and for con-

structive criticism.
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