Lower bounds for ergodic averages

A. Leibman

Abstract

We compute the exact lower bounds for some averages arising in
ergodic theory. In particular, we prove that for any measure preserv-
ing system (X,B,u, T) with u(X) < oo, any A € B and any N € N,

F NS HANTTA) >\ Ju(A)2 + (u(X) — u(A))2 + u(A) - p(X).

N-1
1 —-n
1. Lower bound for the averages N ng_o w(ANT™"A)

1.1. Let T be a measure preserving transformation of a probability measure space (X, B, ).
Let 0 < a < 1; it follows from the mean ergodic theorem that if A is a subset of X with
1(A) > a, then the limit of the averages

1 N—-1
= ANT ™A (1.1)
N HZZ% u( )

exists and satisfies hm ~ Z 0 "(ANT™A) > a2 ([Kh]). This does not apriori guar-
*>

antee that there is a uniform positive lower bound of the averages (1.1) for all A with
w(A) > a that is that there is ¢ = ¢(a) > 0 such that for any X, T and A with u(A) > a
one has + N Zn 0 " (ANT"A) > bfor all N € N. Indeed for the more general expressmns
57 Zn:M (ANT~™A) one still has v l]iw 57 Zn v ANT™"A) > a® ([Kh)),

while, if a < 3, for arbitrarily large N — M one may have =+ Zg;]b wWANT"A)=0
for appropriately chosen T', A and M. (For example, take X = [0,1], A = [0,a] with a < 1
and T'(z) = (x + ) mod 1 with & < 1 — 2a; then there are large intervals of n for which
p(ANT"A)=0.)
The existence of positive lower bound for averages of the form + Z (AﬂT "AN
..NT,™A), where T, ..., T}, are pairwise commuting measure preserving transformatlons
of X, is proven in [BHMP]. We compute the exact lower bound of the averages (1.1):
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1.2. Theorem. Let0<a<1.

(a) For any probability measure preserving system (X, B, u, T) and any A € B with u(A) > a
one has + 27]:[;01 wWANT"A) > /a?>+ (1 —a)?2+a—1 for all N € N.

(b) For any 6 > 0 there exist a measure preserving system (X,B,u,T), A € B with
1(A) = a and N € N such that + Zi\:ol WANT"A) < \Ja?+ (1 —a)>+a—146.

Proof. Passing, if needed, to the natural extension of (X, B, u,T) ([R]), we may assume
that 7" is invertible. We may also assume that X is finite with u(B) = |B|/|X|, B € B. In-
deed, given A € B, u(A) = a, for any N € N and € > 0 there exists a finite set X, a permu-

tation 7" of X and a set A C X such that !%—cﬂ < ¢ and ‘% — M(AHT_”A)‘ <e
for all n < N. (One can deduce this fact from the Rohlin lemma, or prove it directly.)
Thus, we arrive at the following problem: given a permutation T of a finite set X, a subset
A of X with |A| = a|X| and N € N, we have to estimate ﬁ Zﬁfz_ol |ANT—"A|.

First, let us assume that 7' is a cyclic permutation: X = {1,...,m} and Tz =
(xmodm)+1. Let A C{1,...,m} with |A| = b = ma. For any k € N, if we replace X by

{1,...,km}and Aby AU(A+m)U...U(A+ (k—1)m):

A A A+m A—l—(k;—l)m
.. mu .y — — L .3 . & L .y ....= . .mu .4
2m km

1 m 1 m

then the quantities |A|/|X| and |[ANT™"A|/|X|, n € Z, do not change. Hence, we may
assume that m is arbitrarily large. Fix € > 0 and assume that N/m < . Under this
assumption, we will estimate from below the sum

N-1
S=) |[An(A-n)| =) _|An[z,z+ N -1]],
n=0 zeA

which does not exceed Zg:_ol |[ANT—™Al.

To make the argument more transparent, let us reformulate the problem in combi-
natorial language. Assume that b archers are positioned at the points 1,2,...,m of the
real line, no more than one archer at a point: there is an archer at z iff x € A. Every
archer threatens himself and all other archers positioned at his right at the distance < N.

(That is, the archer located at a point x threatens the archers located in the interval
[,z + N —1].)

AN 1 [ A
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The question is: how should one position the archers in order to minimize “the total
number of threats”

S = Z the number of archers threatened by R,

R is an archer



and what is the minimal value of S7?

We start with an arbitrary positioning of archers

—& Y. P, 9P P . P » B, B . B PP F

1 N m

and will “improve” it by moving the archers in such a way that S will not increase.

Step 1. Assume that by archers are located at the points of the interval [1, N]. If b3 > 0,
we move these archers to the left end of the interval [1, N]; clearly, this does not increase
S. As a result, all (integer) points in the interval [1,b;] become occupied (we will say
that [1,b1] is full), while all points in the interval [b; + 1, N| become free (we will say that
(b1 + 1, N] is empty):

I§%§%§%§%I§% < I§%§% A . PR, B ». B p. By ?%

f
1 b1 N bitN m

Step 2. Now, if an archer R is located at a point = € [N, b; + N — 1] and the point z + 1 is
not occupied, then R can be moved to x 4+ 1. Indeed, after this relocation R is no longer
threatened by the archer located at  — N + 1 € [1,b1] and so, the number of archers
threatening R decreases by 1. On the other hand, the number of archers threatened by R
increases by at most 1 and, hence, the total number of threats S does not increase. This
allows us to move all archers located in [N + 1,b; + N] to the right end of this interval:

I§%§%§%§%I§% : I>§%§%I§% ».L PP I;?% ». » p. Py ?%

1 b1 N  bitdy  bfFN bidtN m

Assume that there are ¢; archers in [N +1, b1 + N| (possibly, ¢; = 0) and put d; = N —¢q;
then after this rearrangement the interval [N + 1, b + d;| becomes empty and the interval
[b1 + d1 + 1,b1 + N] becomes full. Note that ¢; < b; and so, by +d; > N.

Step 3. We shift the archers located in [by + N + 1,61 + N + d;] to the left end of this
interval; we can do this since, at any position, these archers are threatened by all archers
from the interval [b; + dy + 1,b; + N| and are not threatened by the archers from [1, b;]:

I§%§%§%§%I§%. —— . . PRI 0B B p, ?%

f f f f
1 b1 bitdi  bitN bitditbs bitditN m

Assume that the interval [b; + N +1,b; + N + d;] contains e; archers and put bs = ¢; +e;.
Then, after this rearrangement, the interval [by + di + 1,b1 + di + ba] becomes full and
the interval [by + dy + ba + 1,01 + di + N| becomes empty. Note that by > ¢; and so,
di+by>dy+c¢; =N.



We repeat Steps 2 and 3 starting at the point b; + d; + 1 instead of 1, and obtain an
empty interval [bl + d1 —+ b2 —+ 1, b1 —+ d1 + bQ + dg] and a full interval [bl —+ d1 -+ bQ -+ d2 —+
1,b1 + dy 4 by + d2 + bs]. And so on, until we reach the last archer. In the process of the
last application of Step 2 some archers will possibly be forced to cross the boundary of
the interval [1,m] and move to the interval [m + 1,m/] with m’ < m + N. The resulting
configuration will represent an alternating sequence of full/empty intervals of lengths,
respectively, by,dy,...,bg_1,dr_1,bg, where b;, d; satisfy 0 < b, < N for i = 1,...,k;
0<d; <N,b+d; >N andd;+bj41 > Nfori=1,....,k—1; b1 +...+ by = b and
dl—f-...—f—dk,l :m'—b.

u§%§%§%§%§%\ 1\§%§%§%§%§%§%§%\ B ... B /\§%§%§%§%§%§%

N
1 ~~ ~~ g N~ N~ N ’

by dq ba do di_1 bi m

In this situation, the first (from the left) archer of the i-th group of archers threatens all
b; members of this group, the next one threatens b; — 1 archers, and so on. In addition,
the last archer of the i-th group threatens N — d; — 1 members of the (i + 1)-st group, the
next-to-last archer threatens N — d; — 2 archers of the (i + 1)-st group, and so on. Hence,
the number of threats coming from the members of the i-th group is

(bi+(bi_1)_|___,_|_1)_|_((N_di_1)+(N_di_2)+__‘+1) = bi(b;'i‘].) + (N—di)(év_di_l).

The total number of threats S is, therefore,

o i bi(bi +1) = (N —d;)(N—d; — 1)

- 2 2
=1 =1
1 k 1k—1 1 k k—1

_ 1 2, g2 T _ _

=52 W52 (N=di)?+ 5% bi=5 ) (N—d) o)
=1 =1 =1 i=1 .
1k ) 1 k—1 ) k=1

> (S b, N — d, “N"(b;+d; — N

> op () + o (X )+ ;( * )
1 1 2 1

> p2 4 -1 ! ) o 2

> b +2k((/<: )N —m' +b) %(b + (kN —m/ +b)?),

where m”” = M’ + N. Considering the right hand part of (1.2) as a function of k, one finds
b2+ (m' —b)?
N

that its minimum is reached when k = and equals

’

N+/b2 + (m” —b)2 — N(m" —b) :mN(\/a2+("Jl—/—a)2+a—m7”).

Since 1 < %” < % < 14 2¢ and € can be taken arbitrarily small, we have S >
mN (y/a? + (1 —a)?+a—1). (Returning to the archers, we see that, if we ignore the fact

that k, b/k and m/k must be integers, the “safest” configuration is the following one: the

/b2 —_bh)2
b archers form k = M equal groups with equal distances between the groups:




For this configuration S = N4/b% + (m — b)? —

We obtain, therefore, that in the case T is a cyclic permutation,

1Nl

N—
NZ|AHT "A| > NZ n)=%£S>m(va*+ (1—a)?+a-1).
n=0 n=0

Now let T be an arbitrary permutation of an m-element set X. Let X = X; U...UX]
be the partition of X into the union of disjoint cycles of T" and let m; = |X,|, j =1,...,L
Let AC X, |A| =b, A; = AN X; and a; = |4;]/|X;|, 7 =1,...,1. Then for any N € N

we have

N—1 I N-1 l

1 1

N E ‘AQT_”/H:N E E ‘AjﬂT_nAjlz E mj(\/a?—l—(l—aj)Q—l—aj—l).
n=0 j=1 n=0

Jj=1

Since the function ¢(a) = y/a? + (1 — a)?+a—1 is convex, the conditions mi+...+m; =
and = (a1m; + ...+ alml) =a 1mp1y 2]21 mje(aj) > me(a). Hence,

N—
ZADT Al = m(yva?+(1-a)?+a—1)

and

N—
1 n n
NZ (AT~ A_—Z|AmT Al> a2+ (1-a)2+a- 1L

To prove part (b) of the theorem, we take X = [0,1], A = [0,a] and T'(z) = (z+ L)
mod 1 with m to be specified later. We may assume that a is rational and, moreover, that
a:%,beN. Then for m — b < N < m we have

1N1
NZMAQT nA) =
n=0

a (b(b+1)  (N—m+b)(N-—m+b—1)
mN< 5 T 2 ) (1.3)
1 .
=5, (0@t D+ +a-Dly+a—1-3),

where we put y = N/m. By taking m large enough we may make (1.3) to be less

then i(aZ +(y+a—1)?%) + & forall y € [0,1]. For y = /a2 + (1 —a)? one has
(a +(y+a—1)2) =/a®+ 1 —a)? 4+ a — 1. Therefore, choosing N and m so that y =

% is sufficiently close to y/a? + (1 — a)?, we get 5 (a +(y+a—1)?) <a®+(1—a)*+

a—l—l—gandso,%ij:_olu(AﬂT_”A vat+(1—a)?+a—-14+6. g
)



1.3. Given a > 0, a positive lower bound also exists for the averages % Z fr"fdu
where f is a nonnegative function with [ fdu = a:

Theorem. Leta > 0.

(a) For any probability measure preserving system (X B, ,u, T) and any nonnegatz've inte-
grable function f on X with [ fdu > a one has + Z f fT"fdp > % for all N € N.
(b) For any § > 0 there exist a measure preserving system (X B, 1, ), a measumble

function f on X with [ fdu=a and N € N such that + Z fT™ fdu < —+6

Proof. Fix N € N. Again, we may replace our system by a finite one and assume that T
is a permutation of a finite set X, | X| = m, and that f takes on only integer values. We
have to estimate the sum Zg;ol Y ozex f(@)f(T"z), where f(x), x € X, are nonnegative
integers satisfying »__y f(z) = am.

First, let T be a cyclic permutation: X = {1,...,m}, Tx = (xmodm) + 1. Then the
problem is equivalent to the following one: b = am archers are positioned at the points

.,m, f(x) archers at a point x. An archer located at x threatens the archers located
in the interval [z, 2 + N — 1], totally Zivz_ol f(xz + n) archers. We have to estimate

m f(z) N-1

S = if(x)f(x+n Z fo+n ZZ(Zf(:B+n)>

n=0 =1 =1 rz=1r=1 n=0
= Z (the number of archers threatened by R).

R is an archer

Having replaced X = {1,...,m} by {1,..., Nm} and extended f to {1,...,Nm}
by f(z) = f(x — m) for x > m, we may assume that m is divisible by N. Let us
subdivide {1,...,m} into §; intervals of length N. Let b;, i = 1,..., %, be the number of
archers located in the i-th interval. Fix ¢ and enumerate the archers of the i-th interval
in succession from the left to the right. Then the first archer threatens all b; archers in
the interval, the second archer threatens at least b; — 1 archers, etc. The total number of
threats coming from the archers located in the i-th interval (to the archers in the same

2
interval) is > b"(bé;l) > % Hence, the total number of threats S satisfies

m/N
235

We therefore have 4 Z erX f@)f(Trz) > &S > 2

Now let T be an arbltrary permutation of an m-element set X. Let X = X U...UX; be
the partition of X into the union of disjoint cycles of T, let m; = |Xj|and b; = >° . ¢, f(@),
7=1,...,1. We have

/2 2
(50 =5

N
Z—
2m

1\:J|M\J

om

N —

N-1 l
EIDWIOTGOEESY (CICAED P =

n=0 z€X j=1 n=0 zeX; j=1

—_
~

S
N

3



Under the conditions mq + ...+ m; = m and b; + ...+ b; = ma, the minimal value of the

right hand side of (1.4) is reached when 2L = ... = 2L = ¢ and equals ma?. Hence,
1 my

2

1 N-—1 1 N-—1 a
93 [T sdu= 530S @) =

n=0 z€X

To prove part (b) of the theorem, take f to be %14, where A is a set of measure ¢ > 0
in X. By Theorem 1.2, for appropriately chosen X, A, T and N we have

S 5c?
_ —-n ) DAY B oct
N;M(AOT A)<VE+ 1P te—1+ 5,
and so,
RS 15~ (a)? a2 o
N " =N - - N (VeErl—c2+c— 0

. . a? a? 1 N—-1 n a?
SlIlCGll_I)I(l)g(\/CQ-I-(l—C)2+C—1)ZT,WehaVe ~ Yoneo J ST fdp < % + 6 when ¢

is small enough. g

2. Lower bounds for some non-conventional ergodic averages

2.1. Let T1, ..., T} be pairwise commuting measure preserving transformations of a proba-
bility measure space (X, 3, 1) and let A be a set of positive measure in X. Let us consider
the averages

Ni—1 Ni—1

ﬁimZ“( N (Iz™a)

n1=0 n=0 Sg{l,,k} €S
Ni—1  Np—1 (2.1)

1 » B o
= N 2 e o MANTIMANT AN LN T T A).
n1=0 nk=0
The convergence of (2.1) as Ny,..., N — oo is known only in the case T} = ... = T} for

k =2 (due to V. Bergelson) and k& = 3 (B. Host and B. Kra).
2.2. If Ty,..., T do not commute the limit of the averages (2.1) may not exist:

7



Example. Let a measure preserving transformation P of a probability measure space
(Y,D,v) and a set B € D with v(B) = a, a # 0,1, be such that v(B N P~"(B)) =
a? for all n > 0. Let S C N with 1 ¢ S; define P, = Pifn € S and P, = Idy
otherwise. Take (X,B,u) = (Y,D,v)N, A= BxY xY x...and define T}, T»: X — X by
Ty (y1,92,-..) = (Piy1, Paya,...) and To(y1,y2,...) = (Y2,¥s,...). Then for any ni,ne > 1
one has p(ANTy™MANT,™ANT™MT,"A) = a® if np € S and = a? if ny ¢ S.
Therefore, if S is such that the density d(S) = ngnoo +|S N [1,N]| is not defined, then

: 1 Ny—1 ~Np—1 - - i — :
Nl,%n_)m NG Doni=0 Dnae0 p(ANTT™MANT, ™ ANTT ™ T, " A) does not exist.

2.3. Nevertheless, a positive lower bound of the averages (2.1) exists even for noncom-
muting 71, ..., Tk. Put p(a) = v/a®> + (1 —a)? +a—1, 1 = ¢ and pi(a) = ¢(pr—1(a)),
k=23,...

Theorem. LetTy,..., T, be measure preserving transformations of a probability measure
space (X, B, 1) and let A € B, u(A) = a. Then for any N1,..., Ny € N

Ni—1 Np—1

ﬁ oo w( N Iz a) 2 el (2.2)

n1=0 ng=0 SC{1,....k} i€eS

Proof. We use induction on k; the case k = 1 is Theorem 1.2. For all ny,...,ng_1 € Z+
define Ay, ny_, = N (HieS Ti_mA) and an,y,ny_, = N(Am,m,nkfl)-
SC{1,...k—1}

Fix Ny, ... ,N;. By induction hypothesis we have

1
v D ) 9,
Ni...Np_1 Z_: Z_ any,..., k-1 Pk 1(a) ( 3)

The left hand part of (2.2) equals

lel Nk—l_l Nk—l

Nl...lNk_l Z Z <Nik Z 'U(Anlvwnkfl mT_nkAnl,...,nk,1)>

n1=0 ngk_1=0 ng=0

By Theorem 1.2, for any nq,...,n;_1 one has NikZN’“_l P(Apy e T A e y) >

n =0
©(Gny,...ny_,)- Since ¢ is a convex increasing function on [0, 1], taking into account (2.3)

we get
1 N;—1 Nig_1—-1 1 N;—1 Ng_1—1
N Y (e Y S )
Ni.. . Nps Z Zﬁ P(an,,...np_r) 2 ¢ Ny .. No, Z Zﬁ N1, k-1
n1=0 ng_1=0 n1=0 ngk_—1=0

> o(pr-1(a)) = er(a).
[



2.4. We now pass to the averages

N;—1 Ni—1

1 _ _
n1=0 ngE=0
Theorem. LetTy,..., T} be (not necessarily commuting) measure preserving transforma-

tions of a probability measure space (X, B, ). For any A € B, u(A) = a,

1 Ni—1 Ni—1

li _ ANT™MAN...NT, " A

exists and is not less than a*+1.

Proof. We have

1 Ni—1  Ng—1

li _ ANT, ™AN...NT, " A
Nl,...}lr\frllc—)oo NlNk nlz—o nkZ—O ,U( ! k )

1 Ni—1  Ny—1
=, 1 D Ly T (1a) ... T (1a)d
N1 lj{I]iﬁooNl Nk nlzzo Z /)( A 1 (A) k (A) 1%

N-

..... . nk:O

1—1 Ni—1
:/u(mnﬁzﬂmmuw(mlﬁznuM@:/ﬁmnm
X n=0 A

N1—>OO n=0 Nk—>OO

: N-1 .
where f; = ngnoo % Yomeo IM(1a),i=1,... k.

2.5. Lemma. Let T be a measure preserving transformation of a probability measure

space (X, B, ), let A€ B, u(A) >0, and let f = A}im % ijz_ol T"(14). Then0 < f <1,
—00

f(z) #0 for almost all x € A and fAdTH <1.

Proof. Without loss of generality we may assume that (X, B, u) is a Lebesgue space. Let
X —Y, u= fY [ty dv be the ergodic decomposition of p and let B = {y ey ‘ oy (A) >
0}. For almost every y € Y we have ngnoo + 271;7:—01 T™(14) = py(A) in L (X, py) and so,
f’ﬂ_l(y) = iy (A). Therefore,

p({z € Al f(z) =0}) =pu(A\771(B)) < / py(A)dv =0

Y\B

and




2.6. We have, therefore, to determine the minimum of F = [ 4 J1--- frdp under the
conditions f1|A > 0 and fAd” =1:1=1,...,k. We pass to a finite model: A ={1,...,m}

and f;(j) =x;; >0,j=1,...,m, with ZJ 1 mz =1,i=1,...,k. We have to minimize

the function F(x11,..., 2k m) = Z;”_l T1j... T - At a point of extremum of F' it must

be grad F' € Span{grad(zj 1 wll ), . ,grad(zj s )} that is, for some cq, ..., c, € R,

% = xf,j fore=1,...,k,7=1,...,m. This 1mphes Til=...=Tim,t=1,...,k,

that is, f1,..., fr are constant on A. Hence, the minimum of F' is attained when f1| A=
.= fr|4 = @ and equals a*u(A) = "', g

2.7. The same proof works for the uniform version of Theorem 2.4:

Theorem. For any measure preserving transformations Ty, ..., Ty of a probability measure
space (X, B, 1) and any A € B, u(A) = a,

Ni—1 Ni—1

Ii wWANT ™ AN, ..NT, ™A
Ny My Ny = My 0 (Ny — My) ... (Ng — M) 2;41 nkz;mc A

exists and is not less than a*T1.

2.8. A lower bound for the averages (2.4) (which is not exact, of course) can be taken from
Theorem 2.3:

Corollary of Theorem 2.3. Let T1,...,T; be measure preserving transformations of a
measure space (X, B, 1) and let A € B, u(A) = a. Then for any Ny,..., Nty € N

1 Ni—1 Ni—1
N—Nkz Y p(ANTI™MAN. . NT™A) > op(a).

n1=0 nE=0
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structive criticism.
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