A. LEIBMANX

FIBER BUNDLES WITH DEGENERATIONS AND THEIR
APPLICATIONS TO COMPUTING FUNDAMENTAL
GROUPS

ABSTRACT. An analogue of the initial segment of the exact sequence of the homotopy groups of a
fiber-bundle is written out for the map which is fiberbundle over some large subset of the base
and has local sections over all points of the base. As an application, presentations of the
fundamental groups of the complements of the arrangements of complexified reflection
hyperplanes of the root systems D, and B, in terms of generators and relations are compuied.

0. INTRODUCTION

0.1. We will compute presentations of the pure braid groups corresponding
to the Weyl groups of the root systems D,, B,, that is the fundamental groups
of the complements in C" of the arrangements of the complexified reflecting
hyperplanes of the Weyl groups of the corresponding root systems. We could
use the Zariski—-van Kampen Theorem for this purpose, but we have
preferred to obtain a more general theorem. There is a series of papers of Falk
and Randell ([F], [F,R(1)], [F,R(2)]) devoted to the fundamental groups of
the complement in C" of hyperplane arrangements of fiber type. In the fiber
type case, one has a tower of locally trivial fiber bundles

C\S,—2— C"1\§, | —2s 22 C\{0)

where cach S, is a union of hyperplanes, and the maps p, are induced by a
linear projection C*— C*~!. Fibers of p, are the complex affine line with
finitely many punctures C'\{a,...,q, }; it is easy to see, that the p, admit
global sections s,: C¥~'\S,_; — C*\S,, p, ¢ s, = id. This structure gives rise
to a series of split exact sequences of fundamental groups:

(1) 1= Z, -1, (C\S) 2, (C*I\S,_ ) - 1,

where %, is free of rankr,, which leads us to an inductive treatment of
7, (C"\S,) as a multigrade semidirect product of free groups.

In this context, the following natural question arises: to which extent can
one generalize this approach to the case when the maps p, are not locally
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trivial fiber bundles, that is in certain fibers p; *(z), te C*~ '\ S, _,, some of the
punctures g; stick together?

The classical arrangement of the complexified reflecting hyperplanes of the
Weyl group of the root system D, with the natural projection forgetting the
last coordinate is such an example (see 0.7), whereas the root systems A4, B,
provide fiber type examples.

In the work we give an analogue of exact sequence (1) for a topological
locally non-trivial bundle. We are going to describe the result in the case of
the bundle induced by a morphism of smooth manifolds (for the case of
topological spaces, see Section 1).

0.2. Let p: E — B be a surjective morphism of connected smooth manifolds.
Suppose that there exists an open subset V' < B such that p|,-1y is a locally
trivial bundle with a connected fiber and B\V; E\p~}(V) are unions of
locally closed submanifolds of B, E, respectively, of codimension >=2.
Suppose in addition that p has local sections over every point of B. For
every component of B\V of codimension 2 choose a small loop around it
and join this loop with a reference point by all possible continuous paths in
V considered modulo homotopy. Lift the obtained set of generators of
ker(n,(V) — n,(B)) into U so that every component of E\p~ (V) of codimen-
sion 2 would get its Joop. Denote the obtained subset of 7,(p~'(V)) by H.

PROPOSITION. There exists the exact sequence of groups
@ 1 = R - 7 (F)/Im(my(V)) - n4(E) - my(B) > 1,

where R is the normal subgroup which is generated by the following two sets of
elements:

(i) the elements of the form x; 'h; 'x;h;, the x; running over any set of
generators of n{(F)/Im(n,(V)) and h; over the set H:

(i) the powers of elements of H projected trivially into n,(V), that is the
elements of ker((pl,-11))s: (H) » n,(V)), where (ﬁ) is the subgroup of
n.(p~ V) generated by H.

0.3. This proposition is a rather technical result and it is not easy to use it
(though a simple example is described in 1.12). We provide a proof for a
general version (Theorem 1.4) of the Zariski—van Kampen Theorem (see
[Zar], [vKam]), which implies, in particular, the following result in the case
of manifolds:

PROPOSITION. Under the assumptions of (0.2), suppose that the map p
admits a global section which intersects every component of E\p~*(V) of
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codimension 2. Then (0.2) is reduced to
A3) 1= R-m(F)-ni(E)2n,(B)— 1,

where R is generated as a normal subgroup of n,(F) by the elements of the form
xi “h; ' x;h;, the x; running over any set of generators of mny(F) and h; running
over any set of generators of ker(n,(V) — n(B)).

In other words, only those loops in n,(F) coincide in n,(E), which can be

obtained from one another by the action of the monodromies of the elements
of n,(V) vanishing in n,(B).

0.4. Note, that the conditions imposed on the morphism p, except the
condition of existence of sections, are naturally satisfied for the morphisms of
smooth complex algebraic varieties. Thus, as an application, we obtain a
proof of the following known fact:

PROPOSITION. Let p:S — C"~* be a projection of an algebraic hypersur-
face S in C" onto a generic hyperplane, K e C*~* the divisor consisting of the
singularities of the projection p in codimension 1 (including both the singular
points of p and the ramification of p). Then the fundamental group 7,(C"\S) has
a presentation in terms of generators and relations with deg S generators and
(deg K)(deg S) basic relators. The relators are defined modulo conjugation of the
generators only by topological types of the singularities of the projection p.

0.5. We prove also the following proposition (see [K]):

PROPOSITION. Let §', 8" be two hypersurfaces in C* without common
irreducible components. Assume that §', S” are in generic position in codimen-
sion 1, that is the sets (S'\S') U (§”\S")Using(S')using(S”) and §' ~ §” do not
have any common components of codimension 1. (Here §', 8" denote the closure
of §', S” respectively in P*). Then

T (C\S U §7)) = 7, (C"\§") x 74 (C™\S”).

0.6. As a particular case of Proposition 0.4 we have

PROPOSITION. Let {L;, i =1,...,d} be a finite set of hyperplanes in C";
{M;,j=1,...,k} be the set of the planes of codimension 2 which are their
intersections. Then m,(C*\| ){ L;) has a presentation of the form

4

q
{ai,1<i<di[ aj,&i],ielq,lsqsk}
jel,

4q
where 1, = {i < d|M, < L;} and &; is an appropriate conjugate of a;.
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0.7. Exact sequences (2) and (3) are used for the computation of concrete
examples. Example 3.4 is that of the complement of the arrangement of
complexified reflecting hyperplanes of the Weyl group of the root system
D,:E,=C"\L,, L, = {J1<i<j<n{X: = x; = 0}. The projection p: E, > E,_,
defined by p(xq,...,%X,—1,X,) = (X¢,....X,_4) has a non-constant fiber
P(X1, s Xy g) = C\{£xy,..., £ x,_}. Thus, the fundamental group of the
generic fiber is the free group #,,_, with 2n — 2 generators ay,...,a,_1,
by,...,b, , where qg;, respectively b;, corresponds to a loop around the
puncture Xx;, respectively — x;. In [Mar] it is proved (from a purely algebraic
reasoning), that each degeneration of the fiber occurring at y;, = 0 for some
i=1,...,n— 1, provides the relation of commutation a;b;a; 'b;! in the
group %, ,/R = ker p,.. We prove here that these are not all basic relations
and provide an infinite complete generating set of the group of relations R as
a normal subgroup of %,, , for n = 3.

Exact sequence (3) is then applied to computing a presentation in terms of
generators and relations of the fundamental groups of the complements of the
unions of the complexified reflecting hyperplanes of the root systems D, and
B,, that is of the corresponding generalized pure braid groups. For A, such
presentation is known, this is the classical Burau presentation (see, e.g.,
[M,K,ST); we obtain another one. For D, there is another simpler presen-
tation, obtained in [Mar] by algebraic means, and we could not establish an
isomorphism of our presentation with that of [Mar].

0.8. Finally, we investigate the case when the hyperplanes of the arrangement
are defined by real equations (real arrangement) to obtain the following result.

Call the broken line PyP;... P, consisting of segments of straight lines in
R" monotone with respect to a real arrangement S if for every hyperplane of S,
defined by an equation L(x) = 0, we have L(P;) # 0, L(P; — P;_,) # OVi and
sgn L(P, — P;_,) is independent of i.

PROPOSITION. Let us join a reference point O € R"\S with every hyperplane
of a real hyperplane arrangement S by broken lines which are monotonic with
respect to S: they end in a small neighborhood of a point on one of these
hyperplanes away from the intersections with the remaining ones. For each of
these broken lines define a loop as a path which goes along the broken line,
bypassing the points of intersection with S in the counterclockwise direction by
small arcs in the complexification of the corresponding rectilinear segments of
the broken line; then passes around the target hyperplane and returns along the
same path. '
Then, thus obtained set of loops generates n,(C"\(CS)).
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0.9. In Section 1 we formulate the topological conditions for the hypotheses
of Theorem 1.8 and prove it. As these conditions and the proof look too
technical and obscure, we first investigate a more clear case assuming the
existence of a global section; so, we start with Theorem 1.4, which is formally
a corollary of Theorem 1.8. Then we apply these theorems to prove
Propositions 0.2 and 0.3.

In Section 2 we consider the case in which the bundle space E is the
complement of an affine algebraic subvariety of C*. We prove Propositions
04 and 0.5, give a prescription for the practical computation of the
fundamental group in this case and investigate some examples.

Section 3 is devoted to the arrangements of hyperplanes and, particularly,
to the presentation of the fundamental groups of the complements of the D,
and B, arrangements. We prove also Proposition 0.8 here.

0.10. Notation

A x B, the direct product of the groups 4, B

A< B, the semidirect product of groups

a® = b~ 'ab

[a,b] = a” ‘b 'ab, the commutator of elements a, b of a group

(A), the subgroup generated by the elements of the subset 4

(A4)°, the normal closure of (4) in a bigger group G

[A4, B], the commutator of two subsets 4 and B, i.e. the subgroup generated
by the elements [q,b], ac A, be B

7,(X), the fundamental group of a topological space X

7,(X), its nth homotopical group

9., the mapping corresponding to a continuous mapping ¢ of topological
spaces and acting on the corresponding fundamental groups

D, the set of the inner points of a subset D of a topological space

0D, the set of its boundary points

(a, b), the relation ab = ba in a group

(ay,a4,...,0;), the k — 1 relations aja, - g = a, - apay = -+ = aqay - G_,

1, the identity element of a group G.

1. TOPOLOGICAL THEOREMS

1.1. Let p: E — B be a continuous map of topological spaces. Suppose there
exists a pathwise connected topological subspace V' = B such that p|,-1y,)is a
bundle in the sense of Serre. Points of ¥ and fibers over them will be called
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generic; points of the complement K = B\V and fibers over them will be
called singular. Denote U = p~ }(V), L = p~ (K). Suppose we have fixed such
a subspace V and introduce the following conditions on p:

(¢) p has a continuous section s: B — E, pos = idy.

() The generic fibers of p are pathwise connected.

(P) Every path in E with the endpoints in U can be moved off the singular
fibers L by a continuous homotopy constant on its ends.

(y) Every surface in E can be made ‘transversal’ to L at points of the section
s(B). That is, for every continuous map of the two-dimensional disk
¢@:D — E such that ¢(dD) < U, there exists a continuous mapy:D — E
with the following properties:

L. Ylap = @lop
2. there exist a finite number of subdisks d;: D ¢, D, Im(d;) = D, such that

D;noD =, D;nD; = for all i #j, and
3. Y~ YL) = | J; D;, where D; denotes the interior of D;,
4. Yy(D,) = s(B) for any i.

Our first goal is to find an analogue of an initial segment of the exact
sequence of the homotopy groups of a bundle. Choose reference points o’ € V,
0" = s(0o’) and define the fiber F = p~!(0’) with its embeddings f = iz: F o U,
f=iyeip:Fo E.

Consider the commutative diagram of the fundamental groups:

| —— my(F) 2 n,(U) —L— n,(V)——— 1

4) T J by l I

nl(E) % 7'[1(B),

where i, = iy, je = ivy-

Condition (g) gives us the existence of a splitting mapping s,,, condition («)
gives the exact sequence of the bundle; together they imply the exactness of
the first row of the diagram.

Condition (f) means that i,:7,(U) - n,(E) is surjective.

Let us now understand the algebraic meaning of condition (y). Let
xeker(i,), that is a loop which represents « is contractible in E. The
contraction process is a continuous mapping of a two-dimensional disk with
a distinguished point into E:

¢:D — E, 0€dD, ¢(0) = 0", ¢, (0D) = a.
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Using (y), we will suppose that ¢ is transversal (in the sense described in the
statement of condition (p)) to the singular fibers at points of the section.

Join the point o with the subdisks D; by paths w;, whch do not meet 9D\ {0}
and one another and renumber the pairs (D;, w;) in the order in which the
paths w; occur in a small neighborhood of the starting point 0 when moving
in the counterclockwise direction (see Figure 1). Define the loops
;= @, (w;°0D;ow; M) en,(U), where all éD; and D are the simple loops
oriented in the counterclockwise direction.

The loop (IT;w;°dD;°w; })o(6D)" ! can be contracted in D without
touching the interior parts of all the D;. Hence I, a; = o in 7,(U).

Look at «; for some i. Let f; = @, (W;), 0; = 9,(3D;), v; = s, p.(8;)- Then

o = ﬂiéiﬂi_l = (yiﬁi_l)_l(yiéiv; 1)(Viﬁi_1)-

The loop 7,87 " lies in U, and its image p,(y;f7 ") in V can be contracted
along itself, so p,(y.f; ") = 1,,, and y,; * is represented by the loop f,(x;)
for some x;en(F).

The loop y;0;y; * lies entirely in s(V') and can be contracted in s(B);
therefore, it is represented by s, (h;) for some h;eker(n,(V) W 7,(B)). So, for
every aeker(i,) we have two sets {x;eF}, {h;eker(j,)}, such that
o= Hi f*(xi)'ls*(hi)f*(xi)'

Thus we have arrived at the following algebraic situation (we replace «; of F,
U, V, E, B by abstract groups denoted by F, U, V, E, B respectively):

“fe o
!

<
1)
’11

s
—emC Qe =

1
!

H
!

14
L
B

"=
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This is a commutative diagram of group homomorphisms in which the third
line and both columns are exact (here G = ker(i), H = ker(j)).

In addition, the normal closure of s(H) in U contains (and, therefore,
coincides with) G:

G = (s(H))"

(formally, it is even weaker than (y)).
We will identify F, H, V and G with their images in U.

1.2. LEMMA. Under the above assumptions, the sequence

1>R:=([F,H)>FLEBBS1
is exact.

Proof. 1. p: E— B is surjective, as p° s(B) = B.

2. (a) For any xeF pe f(x) = pei(x) = jo p(x) = 15.

(b) Let aeE, p(o) = 15. Then 3GeU, (@) =a=poi(@) =jop(@) =1z
=h:=p(@)eH, 3xeF: & = hx. But H c G, as i{(H) = s°j(H) = 1,
$0 o = i(@) = i(h) o i(x) = f(x).

3. R:=([F, H])is the subgroup of U generated by the elements of the form
[x, h] where xe F, he H. As F is normal in U, R < F. So we have to prove
only that R = Fn G.

(a) HS G, Gis normal in U = (x"'h 'x)heG,ie. RS G

(b) Let e G F. As G is contained in (H)Y, o = II*_, J; *h;4;, where

heH, ieU.
Denote o; = A7 'k, 4, and represent A, for every i in the form 4; = b;x;, x;€ F,
b,e V. Then o; = x; b, “h;b,x; = x; *h 'x,, where h; = b, 'h; *b,e H,as His
normal in ¥, and «; = [x;, b;]h;*.

But Vg,he H, xe F we have g " [x,h] = [x%, h?]g ™!, where x? = g~ 'xg€F,
h? = g~ 'hge H. Therefore

K K K
o= H ([xis hi]hi_l) = n [xi, ki ] H hi_l,
i=1 i=1 i=1

where

1 -1 1 1 -1 i
x§=< I1 hj> x,-( I hj)eF,hi-:( T hj) h,-< Il hj>eH.
j=i—1 j=i-1 j=i—1 j=it1

But a«eF, so II*., h 'eF and, consequently, IT*., h7'=1, and
a=II5, [x},h]eR.

1.3. Let us view the elements [ x, h], generating R, as relations in F of the form
x" = x, and try to reduce their number.
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LEMMA. Let H = H be a subset generating H, F < F be a subset generating
F. Then R = ([F,H]).
Prodf.

[xya h] = ([y’ h]y)[y’ h]
[x, gh] =[x, g1[x% h] for all x, yeF, h, ge H.

1.4. Let us return to the bundle. The group =ny(V) acts on m(F) by
monodromies:

xen,(F), ben, (V)= x" = 5,(b) *xs,(b).

The elements of z,(V) which are equal to 1 in n,(B) act on n,(F)in such a way
that the restriction of their action onto n,(F) is trivial. We have proved that
all the additional relations which should be imposed on n,{F) in order to get
the image of 7{(F) in =n,(E) are obtained in this way. Hence, we have proved
the following theorem.

THEOREM. Under the conditions (s), (o), (B), (y) the sequence
1R n(F)»n(E)y2n(B)—1

is split exact. Here R is the normal subgroup of 7 (F) generated by the elements
of the form x; *x, x; running over a set of generators of n,(F), and h; over a set
of generators of the group H = ker(n(V) — n,(B)).

1.5. REMARK. The topological conditions (f)—(y) are naturally satisfied
when the map p is a morphism of smooth manifolds and the singular set Lis a
union of submanifolds of codimension = 2 (see 1.11) and, so, we will call this
situation ‘the bundle with degenerations in codimension 2’

This notion can be reformulated for the case ‘the bundle with degeneration
in codimension n’. All the constructions are carried over almost without
changes. As the result we obtain that the sequence

Reo nn—l(F)_)TCn*I(E)Znn—l(B)_)nn*Z(F)_) e

is split exact, where R = ([n,(F), ker(m,_ (V) — n,_ (B)] "), i.e. R is the
normal closure in w,_ ((F) of the set of the elements of the form h; 'k}, where
{x;} generates m,(F), {h;} generates ker(n,_(V)— m,_(B)), and h* is the
result of the natural action of 7, on =, _;.

1.6. Now let us try to refuse from the assumption of the existence of a global
section. To start with, we note, that we used only an algebraic section, i.e. a
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splitting homomorphism in the diagram (5). This section exists automatically,
for example, in the case in which H and =,(B) are free groups; but it has also
to satisfy the condition (s(H))V = G. If not, change our conditions:

(B’) The loops in E, and also in B, can be moved off the singular
fibers/points.

(') A set of continuous mappings of the two-dimensional disk is singled
out: Zp = {¢,: D - E}, ¢,(0D) = UVa, so that for every continuous
mapping ¢: D — E there exists such continuous mapping i: D — E that
@lop = ¥ | 0D and there exists a finite set of subdisks {d;: D ¢, D} which
do not meet 0D and one another and such that ¢ (L) UiDo,-, where
D; =1Im(d;), and yod,c X Vi.

(0') There exists a set of continuous mappings Zp = {@;:D — B},
@5(0D) = V¥4, such that the following properties hold:

1. for every continuous ¢: D — B, there exists a continuous mapping
Y:D— B such that ¢l =ylpp and ¥ '(K) = [ J;(D,), where
D; =1Im(d;), {d;: D — D} being the finite set of subdisks which do
not meet 6D and one another, and o d, e Xg;

2. for any @;eXp a mapping @; D — E exists, such that

P°@slop = @slap-
The algebraic meaning of these conditions is:

(#’) The homomorphisms 7,(V) — n,(B) and n,(U) — n,(E) are surjective.

(y) For every mapping ¢, € X, join some point on the boundary p° ¢,(0D)
with the reference point o' by all possible paths in V modulo
homotopy. Lift every such path into U so that it would join the
boundary ¢,(dD) with the point 0" in an arbitrary way; mind the fact
that the generic fiber is pathwise connected. Consider the set of the
loops obtained by passing from o” to ¢,(éD), then along ¢,(6D) and
back along the same path for all ¢, € X, and both orientations of dD.
Denote the obtained subset of =,(U) by H. The paths of H can be
contracted in E and represent, therefore, elements of

G := ker(n(U) — n,(E)).

On the other hand, from considerations similar to those in (y), we
will obtain that every loop of 7,(U) which can be contracted in E, that
is every element g € G, can be represented in the form g = IT, x; ! h;x;,
where x,en,(F), h;eH.
(') There exists a set of the generators in H := ker(z,(V) — n{(B)) which
lift to G; it means that the mapping G — H is surjective.
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Thus, the algebraic situation under the assumptions that the conditions (a),
(5'), (v'), (0') are satisfied, is the following:

11
Lol
GLH-1
PR
(6) 1-FLULV-1
FAVA Y
ELB
o
11

This is a commutative diagram of group homomorphisms, in which the
second and third lines and both columns are exact. (F denotes here
n,(F)/m,(V): because of the absence of a global section the homotopical
sequence does not break into exact triples.) In addition, we have a subset
H < G such that G = (H)*; we will assume that H = H~ ..

1.7. LEMMA. Under the above conditions the sequence
1> Ri=((F,H)H F)>FLE-B-1

is exact.

Proof. 1. Exactness at B: E %> B is surjective, because Vbe BieV, acU
such that j(4) = b, p(¢) = 4 and, therefore, p(i(x)) = b.

2. Exactness at E:

@) VxeFpeof(x)=peoicf(x)=jopoflx)=1

(b) Let aeE, p(o)=1. Then 3aeU such that i@ =a and, so,

jop@)=peoi@ =1and h:= p@E@)eH.
Let geG such that p(g) = h; then & = gx for some xeF, and
@ = i(gx) = f(x).

3. Exactness at F: the only thing we have to proveisthat FA G = R. As F
and G are normal in U, we have R = Fn G. Let ae F n G. Then, for some
x;€F, e H, o = T, x; Yhx; = IL, [x;, b h,.

But Vgl,gzeﬁ, xeF

920%,9.1 = 9,x7 195 ' 9291 195 *92%95 ' 9291 = V1 1 9291 95 V1929195 *95
_ -1 - - - It
=y YN g,y = yr Py gy oyt
= [J’hgz][}’zagﬂ[l’s,gz_ 1]92,

-t . -
where y, = x%, y, = y§, y3 = y§ € F. Therefore, in the expression for «, we
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can pull all h; through it to the right, and obtain « = rh, reR, h =1 h;. As
xeF, so p(h) = 1,; hence he(H)n F.

1.8. We can restrict ourselves in the definition of R to generators of F, and
thus we obtain the following theorem:

THEOREM. Under the conditions (%), (8'), (y'), (§') the sequence
1 - R - ny(F)/ny(V) - ny(E) - my(B) — 1

is exact, where R is the normal subgroup generated by the elements x; 'x", x;
running over a set of generators of m,(F)/n,(V), and h; over the set H; and by the
elements of the form h =11, h;, where h,e H, p,(h) = 1, .

1.9. REMARK. In the ‘codim »’ case (see Remark 1.5) R is generated by
[nl(F)9 H] and nn—l(F) ﬂ(H), Hc< Tcn—l(U)'

1.10. INTERPRETATION. (y') and (¢') together imply, that p(H) generates
H, that is H is a lifting of a set of generators of H. The words of these
generators which are trivial in H, may be non-trivial in E (it is not so if there
exists a global section); from this the subgroup (H) N F arises. Theorem 1.7
says, that the only addition to ([F, ﬁ]), which is known to be a part of the
kernel of f by Theorem 1.4, consists in this subgroup.

1.11. The topological conditions (f')—(6') become more clear in the smooth
situation. Let now p: E — B be a surjective morphism of smooth manifolds, as
in 0.2. First, every element of n,(E) can be represented by a smooth path
transversal to L by the Transversality Theorem, and hence, by a path which
does not intersect L, as the codimension of components of L is <2. This
provides condition (f').

Choose one arbitrary point on every component of L= E\p~ !V of
codimension 2 and small disks with centers at these points and transversal to
the corresponding component. These disks just form the set X introduced in
(y'). Indeed, by the same theorem, we can apply homotopy to every surface in
E to make it smooth and transversal to the components of L of codimension 2
at a discrete set of points of intersection. Every such intersection, say at a
point g, can be moved into one of the chosen points: join g by a continuous
path lying in the smooth part of L with the corresponding chosen point, say
qo- Take the disk in £ with center in g, and bring it into g along this path so
that we get a disk in the surface under consideration (Figure 2). Now, let us
replace this surface by the new one obtained by adding the lateral surface of
the tube and its upper base instead of the lower one. As the disk D is compact,
after a finite number of such modifications we will fulfill condition (y').



FIBER BUNDLES WITH DEGENERATIONS 105

Ahe surface

Fig. 2.

In exactly the same way, choose a little disk for every component of
K = B\V of codimension 2 with the center on this component and transver-
sal to it. This set of disks forms the set Xy from condition (§'); we need in
addition that each disk from X could be lifted into E. This holds since there
exists a local section over every point of B. We find ourselves under the
hypothesis of Theorem 1.8; this proves Proposition 0.2. ‘

If p admits a global section intersecting every component of L of
codimension 2, we can locate X in the image of this section; this leads us to
the conditions of Theorem 1.4 and we get Proposition 0.3 as a corollary.

1.12. Now we provide a very simple example of a computation of a
fundamental group. This is the single example without global section
intersecting every component of L of codimension 2 in this work.

Let 6:E' —C? be the blow up with the center (0,0),p:C?— C!,
p'(x,y) = x, E = E'"\(uvv), where u (respectively, v} is the proper transform
of the straight line x = y (respectively, x = —y); p = p' o 0lg.

The mapping p degenerates only over 0eC'; L consists of the two
components (Figure 3) which are the proper transform of x =0 and the
exceptional line. The generic fiber is C! with two punctures u and v; so, we

u \4
04b

\\ |7

Cl

Fig. 3.
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have the exact sequence
1> R—% - n,(E)— 1,

and n,(E) = #/R; %, is frec with generators u and v.

Proposition 0.2 shows a way to obtain the relators. The set His generated
by only two elements a and b which correspond to the proper transform of
the line x = 0 and the exceptional curve respectively. As a and b both are
projected by p, into the same element of 7,(C*\0), the simple loop around 0,
we see that all the relators in 7,(E) are ™ 4% v~ 'v% and ab™ L.

The first two can be written out immediately since the monodromy with
respect to a is easily calculated. Its action on the basic loops u, v is given by
the formulas v* = uouv ™ u"?!, v = uvu~ ! (see 2.3 for details). It gives us the
single relation uv = vu, and n,(F) is commutative.

To obtain the last relation, we have to contract the loop ab ™! into the fiber.
To this end, let us unfold the bundle over the elementary loop in C! around 0
(Figure 4).

We obtain Figure 5 and see that ab™ ' ~ u + v; so, u = —v in n,(E), and
7(E) ~ Z.

Fig. 4.

b
the fiber.. o/\ 0
v k‘
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1.13. To conclude this section, we will give an example of a mapping, which
satisfies the assumptions (¢)—(y) and the base of which is not a manifold and,
moreover, is not Hausdorff.

Consider a closed braid ¢, that is a continuous mapping of a finite number
of copies of $' into R}, ,\{x = y = 0} for which, in the standard cylinder
coordinatesr, 8, z: x = rcos 8, y = r sin 6, the phase 8 is a monotonic function
of the coordinate of every circumference ([ Bir]). Define the topological space
B in the following way: B = S* U {0} as a set, its topology coincides with the
Borel one on S! and the only open subset containing the point O is B itself.
Let p be the mapping from R? onto B of the form

. peSt forr#0
plr, 0, 2) = 0 for r = 0.
It is immediately seen that p is continuous.

Let p be the restriction of p to the complement E in R? of the image of the
braid: E = R®\Im(¢), p = p|; the conditions (¢)—(y) can be easily verified. Its
generic fiber is the (topological) plane (6 = const, r > 0) with a finite number
k of punctures; its fundamental group is, therefore, free with k generators. We
can, consequently, write out the exact sequence (3) in this situation and
obtain the following known presentation of the group =,(E):

7231(E) = {ai,i= 1,...,k|ai_la(ip - l,iz 1,...,k},

where a? is the result of the action of the braid ¢ on the generator a; of the free
grope %, with the set of generators {a;,i = 1,...,k} (see [Bir]).

2. APPLICATION TO THE CASE OF AN ALGEBRAIC HYPERSURFACE
IN C"

2.1. Let us now turn to the case in which the bundle space E is the
complement of an algebraic hypersurface S of degree d in C"; let
p': C" — C" ! be the projection along a generic direction, p = p'lens. As was
mentioned above, in the algebraic case we have only to check the existence of
sections; all other assumptions of our theorems are automatically satisfied.

But p has a section; for example, in the coordinates in which p is the
mapping forgetting the last coordinate, it can be defined by the formula
§(z) = (z, MaXye () 1nsiwl + 1), zeC" 7L

The set K of singular points consists of the image under the projection into
C" ! of the set of singularities of S and the ramification locus of p'|g. The
closure in C" of the union of singular fibers is L = (p’') " }(K) ~ K x C%; every
time its component meets s(C" ') at a non-singular point.
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Proposition 0.3 says that =,(E) is generated, because of the simple
connectedness of the base B = C" ™, by the group n4(F), which is free with d
generators. These generators, say a,,...,a,, are the elementary loops passing
around d points in different sheets of S in some fiber.

Let us pass on to the relations. Let K be the union of divisorial components
Cof K,V =C""1\K, V=C""\K. Then n(V) = n,(V), and hence, we can
replace K by K and V by V in our further considerations. So, we can suppose
that K is a divisor in C*~; we will call it the branch divisor of p.

Thus, we have arrived at the same situation in C*~*: a hypersurface is cut
out, and so, n,(V) is generated by k = deg K generators by,..., b, which are
elementary loops around the sheets of K lying in any complex line which is in
generic position with respect to K.

So, ,(E) is the group with d generators a;, ..., a, and dk relations @’ = a;,
i < d,j < k, where a® is the result of the action of b on a by monodromy. This
proves Proposition 0.4.

In particular, we have obtained the fact, that n,(E) coincides with n;(E N a
generic complex two-dimensional plane), because all computations were
made in such a plane generated by the generic fibers of the two bundles
C"\§ — C" 'and C"""\K — C"~ 2. Hence, we can assume that n = 2 and K
is the set of singular points {b,,...,b,} = C..

2.2. Of course, the number of relations is in general much less since a part of
those written above are trivial. Every point b; corresponds to a singularity, in
which only few sheets meet, and only the relations which involve the loops
around these sheets are non-trivial among those generated by the action of b;.

Now, we will describe in more detail the structure of the relations. The fiber
over the reference point o’ is C*\{ay,...,a,}. We will assume that Re g; are
different (if necessary, apply the rotation of the fiber). Choose 0” e p~'(0’) such
that Reo” = 0, Im o” big enough, and the loops starting at 0” and passing
around the points g; in the counterclockwise direction as a set of generators of
n,(F) (see Figure 6). We will use the same notation for points and the

Re

Fig. 6.
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corresponding loops. We move on the base to the point b; along the segment
[0, b;] (bypassing other singular points). Meanwhile the deleted points g;
move on the fiber and entangle the loops «;, as shown e.g. on Figure 7. Every
time when Re g;, = Re a;, and the corresponding loops become entangled we
will change the generators to disentangle them. (In the situation depicted on
Figure 7, a,—d, = a,a,a; *.)

2.3. The exact prescription is the following: if at some moment we have
Rea;, = --- = Re a;, simultaneously, we order them according to the value of
the imaginary part, Ima;, > Ima,;, > --- > Im a,, and define the change of
the generators by

-1 -1 -1
a;, = a;, @, = d%ra,a; >, ..., 4 = <H a?y) a;, ( 11 af;f) ,
p=1 p=1
where ¢, , = sgn(Re a; — Re a; ) right before the coincidence. It is clear that
the loops a; will form a system of generators of =,(F) as well. So, when we
approach b; we will have in its neighborhood a natural system of generators
which are conjugate to the original ones.

Over b; some of the deleted points coincide; without loss of generality we
can assume that a; = a, = --- = a;, = O and Re a; # Ofori > [;. Then passing
around b; along a small loop will produce a movement of the points ay,..., q;,
in a small neighborhood of 0 entangling the corresponding loops, and all the
a; with i > [; will remain too far to intervene into this process. Identifying the
loops a;, i = 1,...,1;, with the result of its entangling around b;, we obtain the
relation (a})®’ = dj, the exact form of (a})* depending on the topological type
of the germ of the branch divisor of p near 0. Thus, we have in total Z%_, ;
relations.

2.4. To illustrate the described procedure, we will consider an easy example

of a simple ramification point of order I: a = ' /b. The result of the action of
the loop around the singular point 0 is the cyclic permutation of the deleted
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points ay,...,q, ordered by the decrease of their complex argument. If we
choose generators as shown on Figure 8, we will obtain the relations

Q=G qyeeey 05 =Gy 1y, Ay = 10y Qy_ (G075 -+ a7 L.
REMARK. The last relation is obviously redundant, as it can be reduced to
a, = a, by using the remaining ones. This is a general rule, so that the number
of the relations decreases to ¥y, (I, — 1).

We have obtained, that if S has a simple ramification, then certain
conjugates of the generators corresponding to the sheets giving this ramifica-
tion are equal. However, this is evident a priori: all generators corresponding
to the same irreducible component of the hypersurface S are conjugate. More
complicated relations can be obtained over the singular points corresponding
to intersections of the components of S.

2.5. If the base B is not simply connected, the set of the relations becomes, as
a rule, infinite. Let us study the same example of deleted hypersurface in the
following case: E = C"\S, L is a complex line, S = § U(S"x L), S" = C* 1,
§cC"=C""'xL and is in generic position with respect to L. Then,
considering the projection p: E — C*~ '\ §” along L, we again find ourselves in
the situation of Proposition 0.3, but base B:= C"~*\§” now is not simply
connected.

The general fiber is C\{a;}{, where d = deg S'. Define again the branch
divisor K < C"~! of singularities and ramification of §’ and denote ¥ = B\K.
The group n,(V) is generated by the simple loops b, ..., b, surrounding the
sheets of K and v,,...,v, surrounding the sheets of S” in an appropriate
complex line. Proposition 0.3 implies that 7, (E) is generated by the loops a,[¢
and the loops ;] lift into a section of the bundle:

my(E) = (F4/R)p<my(C"1\S")

H ggie

A)a’Q az .- a;

Fig. 8. The simple ramification of order /.
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where %, is free with the set {g;} of generators and R is generated by the
elements of the form a®* a7 !, where i < d, j <k, and v runs over all the
group 7,{C*~'\S").

This means, that the relators can be obtained by the prescription 2.3 in an
appropriate one-dimensional section of the base, but now one has to write
out these relators not only for the generators, but also for all their images

under the action of all elements v of the infinite group 7;(C*~'\S"):
(@) = ai.

2.6. The following is the simplest example to illustrate the considerations of
Section 2.5. Look at the complexification of the real configuration including
four straight lines x, y, u, a with three intersections (x, y, a), (#, x), (u, a); the
map p is the projection along a (see Figure 9). We have the exact sequence

15 G- n(CN\(xuyvuua)—n(C\{4}) - 1.

We are going to write out a presentation of G in terms of generators and
relations, and show that G is not finitely presented.

The base of the bundle is C'\{A4}, and the singular set consists of one point
B. The fundamental group of the fiber is generated by three elements: x, u, y.
The generators of the fundamental group of C*\{4, B} act as follows:

1 1

A x> xyxy tx” .

B: x> uxu~! Yy ur— uxux ‘u!

Y Xyx

B gives only the relations of commutation of # and x, and all relators of G
have the form [x%, u]. So,

G ={x, y, ul [x*¥', u], neZ}.

Apply the change of the variables z = xy, x = x. Then the relators are
[z~ "xz", u], ne Z. The group {I1f_, x"z™|Zf_, m; = 0} is freely generated by

a
Y
u
: 17
Q
B A
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the elements x, = z "xz", ne Z. So, G has the presentation
{z, u, x,, neZ|zx,z"'x, 1y, [x,,ul},

and G ~ Z_(x,)p<%(u, z). Now it is clear, that all these relations are
independent.

2.7. Our next goal is to prove Proposition 0.5.

LEMMA. Let ', 8" be two hypersurfaces in C" without common irreducible
components, S” contain the affine line (x + L) with every its point x for some
complex line L, ie. 8" = SxL, §<C" ', and the direction L be in generic
position with respect to S'. Denote S = §' U §”.

1. Then there exists the group G, such that Gg:= n,(C"\S) is a semidirect
product Gg ~ G <Gy, where Gg.. 1= 1, (C"\S"), and Gg.:= 7, (C"\§') is a
quotient of G.

2. If, in addition, the branch divisor of S with respect to the projection along
L has no components lying in S, then Gy ~ Gg x Gg..

Proof. Make the projection along L: p: (C™\S) — (C"~"\§). Let K = C"*™*
be the branch divisor of S. We have, by Proposition 0.2, the split sequence

1>R->F—->GgaGi—1,

where F is the free group generated by the loops around the sheets of $"in a
generic fiber. But Gy is generated by the same set of loops, therefore there
exists a natural surjection F — Gg — 1.

R is generated, as a normal subgroup of F, by the relators x"x ™! for xe F,
he nl(C"‘1\§\K); the corresponding relations hold also in Gg. So, for
G := F/R, there exists the surjection G - G5. — 1. And, as G§ ~ Gs.., we have
Gg ~ Go< Gy,

If, in addition, assumption 2 is true, then all the components of the branch
divisor of 8" in C"~* are represented in C*~'\S as well. So, all relations of Gg.
are satisfied in G, that is G = Gg.. Furthermore, when passing around the
sheets of S in a generic plane, the different sheets of §' stay far from one
another, and so, the action of Gg on the generators of Gy is trivial. This shows
that the semidirect product is indeed direct: Gy ~ Gy x Gg...

PROOF OF PROPOSITION 0.5. The general case is obtained from the
lemma by an easy trick. Add one more dimension to C”,

Cn (‘B CM — Cn+ 1
and define §” = §” + Cu.
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Choose a vector v in C" generic with respect to §', and span S’ along the
direction w=1v + u:§:= 5" + Cw. Then u is a generic direction for §'.
Making v longer we can assume that all components of the branch divisor of
S are not contained in $”. Then §, §” and §:= § U §” with L = Cu satisfy all
the assumptions of the lemma. But all the singularities and ramifications of §
in complex codimension 2 are those of S, where S is a generic section of § in
C"*1 and so, Gg ~ G5~ Gg X Gg...

3. ARRANGEMENTS OF HYPERPLANES

3.1. Now, having in mind hyperplanes, we are interested in the case of the
transverse intersection of [ smooth branches; in this case the corresponding /
punctures in the fiber make a complete revolution around a common center.
If these points a; are numbered according to the order of augmentation of
their real parts, we obtain the following set of relations:

! ! -1
a; = (l—[ ap>ai <l—[ ap> yigl
1 1

This is equivalent to the following:
alazo-.al=a2a3...a1a1 = e :alalaz.-.al_l.

For | = 2 this gives the commutation a,a, = a,4,.

In particular, for the case when S is a union of hyperplanes, we obtain
Proposition 0.6. The singular set K in this case is the projection into €C" ! of
the set of transverse intersections; the generic points of K correspond to the
intersections of complex codimension 2 and the relations modulo con-
jugation of generators are given by the table of the intersections in
codimension 2.

3.2. In the case of an arrangement of hyperplanes we can modify prescription
2.3 for computing the conjugations in using segments of (real) straight lines in
C*~ 1 as paths [0, b;].

If at a moment the real parts of a set {g;,,...,a;} of punctures are equal,
divide this set into the subsets of points with equal imaginary parts, and order
these points according to the decrease of the imaginary parts:

{apva=lai=az= - =a}}u{ai=a} = = af,}u -
Imal > Imaf > .

In every subset (say, gth) we order the points according to the augmentation
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of their real parts just before the coincidence, and write down the correspond-
ing relations:

g8 ooq? =gl --a%a? =aa? -t
aiaz -G, = a - 41,47 = 4a;,a;y - dp,

(here g is not an exponent, but a superscript).
Now, define the change of generators:

aj > af or (af)"" (a9 ai(ad)--(af)

a3 — (afaj(a) ™ or (af)”" -+ (a%) ‘ay(ai - (af)

a, > (a4)ah) - af, - (@) " Ha}) ™" or ai,

The next step is the change described in Section 2.3, corresponding to the
points of the previous subsets:

af (@b (a@d)t - (@ Y satag ) e ad)

3.3. In this section we restrict ourselves with the real case, where the
hyperplanes are defined by real equations. In this case K is real too, that is all
the singular points b; lic on the same real line, namely on the real axis. It is
enough to pass along this line to obtain all relations. In addition, the deleted
points g; over this line are real, and the coincidence of their real parts is the
same as the coincidence of the points themselves. So, in this case prescription
3.2 can be simplified as follows.

At the moment of the coincidence of a;,,...,a;, order these points
according to the order of augmentation before the coincidence, say ay,...,q,,
write down the relations:

alaz "'al = a2 -..ala1 = . = alal “.alfl

and make the change:

a, —a, or a '---a;'aa,-q .
a, s aa,a;’ or a '--ailaas--q

-1,—1
a, — aa,--—-a;-- az ‘a; or a.

REMARK. One can introduce a non-canonical order on the set of hyper-
planes by the slopes of the real straight lines in R? which are traces of the
hyperplanes in a generic plane section. This will provide the right order over
all singular points.
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3.4. As an application, we compute the fundamental group of the comple-
ment of the arrangement of hyperplanes D,:= {x, + x;, 1 <i,j<n,i# j}in
C"; we denote this group by &,. This is a real arrangement, and the
computations are casy; but the result is non-canonical and cumbersome.

Denote the hyperplanes x; = x; by the symbols g; ; (=a;;), and x; = —x; by
b; ; (=b; ;). These symbols form a set of generators of the group; the relations
will be obtained from the intersections. In codimension 2 we have four types
of double intersections (a; ;, b; ;), (a; ;, by 1), (a; ;, ar. 1), (b; ;, by 1), and two types of
triple ones (a; ;, a;x, a; 1), (a; j, bj &, by u); here i, j, k, | are pairwise distinct. We
will code the relations by the same parentheses, e.g. ab = ba is (a, b), and
abc = bca = cab is (a, b, ¢). This yields all the relations of the group, but only
modulo conjugation of the generators. To find these conjugations is the main
problem.

Choose a real two-dimensional plane (s, f) in C", defined by

(7) Xy =Py + gt —ry, Where p; < p;, q; << q;, v, < r; for i < j.

In this plane our hyperplanes trace out the straight lines

i—(; r.—r, ( : ; r.+ri
ai,j={3=‘q—l“ﬁqt+ J_ t}!bi,j=iszmt+”ib-—}'
pPi—bi P;j—Di pi+pi Pt

We will now move, according to prescription 3.3, along the t-axis watching
the intersections of our lines.
We start from t = — co. Here our lines are arranged in the following order:

biy>a1,>by3>bi3>a3>a,3>by,> - >a, ,
that is

a; ;> by, by >a, forij<l

biy>b;,a,>a;, fori<j<l

Divide the set of the lines into groups according to the augmentation of their
greater subscript: the kth group contains a;,, b; , for i < k. We see that when
t = — o0, the groups are widely separated, ordered according to the decrease
of their numbers; inside every group the elements are ordered according to
their smaller subscript: first g, , according to the decrease of the subscript, and
then b, , according to its magnitude. Call this order original.

The binary intersections give us relations of commutation and do not
involve any conjugations. The triple ones involve conjugations for the middle
element (see Figure 10). Let us enumerate the triple intersections, watching
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.

Fig. 10. b—aba™* or ¢ 'bc.

.

the order of the elements. The original order is following:
(@4 Gigs ai,j)s (bi > bj,k’ ai,j)7 (aj,kn bk, bi,j)7 (@i > bj,ka bi,j) fori<j<k

In every set of parentheses there is an element of a lesser group; we will make
the change of generators given by prescription 3.3 by the conjugation by this
element:

ap = aijjlai,k a; j, biy— aijjlbi,kai,ja b bijjlbi,kbi,j'
Call the conjugating element a junior element of the triple.

The lines a;; (or b; )) and g, (or by ;) meet one another at the point

ritr,  rixr

_pEpe pitp; "
Gt _ate P
pEpe piLp;

t=

where ! > i, j, k. Therefore, we observe the following order of the intersections
when we increase t: first the elements of junior groups intersect the senior
groups, and only after this they meet one another. So, by the moment of the
meeting with the senior groups, every element of the junior ones will not have
any conjugations and their order will be original.

To find the order of the intersections of the elements of the same group one
could make a long computation; but it is easier to record just the sequence of
junior elements of triple intersections. The order of the triple intersections is
obviously recovered from the sequence of junior elements.

We also have to find out the order of triple intersections which have
occurred by the moment of every double one (g, by ), k <; this is an
exceptional case, as there is no junior elements. Since the elements a, ;, by, lie
between a, ;, by, our lines first have to meet them,; the last such intersections
are those with the junior element b,,: they are (4 b ;b and
(ay1, by, by ). So, by this moment the intersection (a1, by,;) has not yet
occurred. But the previous intersections, with the junior element a, ,, are
(Gis» A1 15 a1 ) and (byy, by 1, a4 1), 50, the intersection (a by ;) has not occur-
red (Figure 11). Hence, the intersection (ay ;. b, ;) takes place between those
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b,
bJa”
b,
L q
t
a,
Fig. 11.

with a, , and b, ;. The last intersections of the /th group, which are with the
junior element b, ,, that is (a, 5, by 5, by ») and (ay 5, by 1. by ,), show, that the
intersection (b, ;, a; ;) has not yet happened.

Now, as we know the order of all intersections, we can describe the
relations of 9,. In all formulas we suppose i #j # k #i,i,j, k <l;a;,;=a;;,
b;;=b;;. The relations have the form:

(@4, @yp5 aiy) fori<j, (b, Ei,la a; ;) forj<i, (G, by, by
(Zlk,l’ ai,j)= (ak,la bi,j), (bk,h ai,j): (bk,l’ bi, j)a (ak,b bk,l)'
Here the tilde denotes the conjugation of the corresponding generator; a
generator without tilde is a junior element. To obtain the explicit expressions
for these conjugations, we have to take the product of the elements of the
previous groups which are lesser than the junior element in their original
order, according to the following rule:
a; ; for &, (j > i) by; (j # i) and a;; (j < i) for b, .
Here is the list of the relations of &, (we assume | <i<j<k<I<n)
<1> (aztcl,l—l"'ak,kﬂ’ bel.lﬂ"'bk.kﬂak—l.k“'al,k)
<2> (aZfl.l—l"'ak,k+l, ai,j)
B (g™ ay)
<4> (aZ;,r—1--.ai,k+1’ aj,k)
<5> (azfl"_lmak'kévl’ bi,j)
(6> (@, byy)
<7> (a?j,l—l"'ai,k’ j,k)
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b, ) k@ by by
<8> (b k=1 Ok 1%— 16 G160k O l.k, ai,j)
9> (bbu 1+ Diaes ;)

<10> (b i1-17b, ;x+1 k)
Dii—t b 1B 1@ b Do 1
A1y @ ,b,)

biy-1 - bigsy
125 (b} > biy)

A3y B by

<14> (a - 1"'aj.j+l’ a‘}-‘,x—r"ai.jﬂ’ ai,j)

il

<15> (bb.1 17bi gy bl?j.l—l"'bj‘j+laj—l.j"'ai+1,j, ai,j)
<16> (a i-1""G, u’ b]i' 1 b”+1a] 1.7 ﬂl,jbl,j“'bi—l.j’ b”)
(AT (@ m, b, fums b py )

3.5. We can considerably simplify these relations (but we could not reduce
them up to the ones in [Mar]). We are going to illustrate the method of the
reduction on the relations (23, {3, {4}, {14): the elements g, ; of 9, generate
the subgroup .7, corresponding to the root system A,; and these relations
form a complete system of relations of this group. We use the evident
implication (g, ¢) = ((a, b) <> (a, b)) and the induction on ! to prove that this
set of relations is equivalent to the following one:

2> (@ @) 37 (@ips a7, <4 (@545 A1),
14> (a5, a4, ;).
Q2 (@) g p)fork <p<l=((2>=(2})
B (ay aj,;',"‘) fork<p<Il=((3)<={3)
A% (aij, ) fork <p<l=(4)<=<4))
{14: a;.j;""‘"'a"f+‘az}"“"'a"f”
= (by <3)) (aa,)
—(by CAp)(afir gyt eyt

PP TR
_ ii—1%i1-1"""8 j+18,j+1
(a;,a:)

and, as (a;;, a; ,a; ,) for k < p <,

-1 j+1 ,Bi1-1" au+1__ ii—1Gi0—1"""3 5410 j+1
a; Jajl azl (al ja] i, l) ’

Aip—1"Gj 541 (0ia—1"" i+ — G- 1@i—17 G+ 11
4G 4 a;,;=(0;,8:,4; ;) )
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SO

a aaj,l—1"'ﬂj.j+1a‘_li,l»1"'ai,j+1 — aa.lj,lf1'"aj,j+1a"1i‘t~1"‘ai,j+1a_ )
Ll il L il Lj

< a; j4;10;1 = Gj,10:10;, 55

i19

furthermore,
g T g e e
gx) L%
—(b <4>) glii-v “iit2g. . q a. .aaj,z—x“'aj,jﬂ
y a; 141055 1 il i+ 19,5+ 14,8
(by induction)
;, 4. ; d—17 g
a;,+1a,;+1al1‘ A A Y T i "
_ Gii-1" +2 Qir—1 je NG+ 1 vl
(by <3>) (a ;. at,jaj,]l Jid )u J+1—
_(al a; . J,l) j.l—1ai,l—1"'aj.j+1ai.j+1’
and hence,
Gig—1 "+ d—1 et Q-1 ir1 ig—1 i+
ai,l ’ avja],Jl =4 a]l ai,l
=010, 105, = 0, j4,19:,1-
Therefore, we have the following presentation of .<Z,:
a,
a;;, 1 <i<j<nl(ay, o), @i a5, (@50 a0, (@5, aj05 a;)
J W P

for1<i<j<k<l<n}

REMARK. The Burau presentation of .o/, can be obtained by choosing the
reference point of the fundamental group on the line ¢ = 0.
By similar computations, we obtain the following complete set of relations

in 9,:

(azl,‘l_l'r“a“a b)),

(@55 O1)s (s ‘12}")7 (a5 1),

(bi,j’ ak,l)a (bi,k’ azjll‘k)a (bf,k> azil’k)>

(ai,ja bzkl,l‘l"'bk,k+1ak—l,k'"al,kbl.k"'bk—l,k)’ (ai s bj l): (ajks bi l)a

(b, b

(al]’ a1 4, l)’ (aau v i'i-H, b”, bj l)s

bkl 1 bk 19— 1@ b D lk) (b f ) (b . bbtk
l 2 ], J 2

(b ;l I u bbjl 1 11+1”1 1" ax,b1;'bi~1,j) (b i, bl)
> \Pi,js Y1 Vi)

ij» &
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3.6. The induction used in our derivation of relations for &, shows that 9,
is in a natural way a subgroup of Z,. In fact, this inclusion is a section of split
sequence (3)

1%->9,29,_,—~1

corresponding to the locally non-trivial bundle C"\&,— C"~ '\ 2, _, induced
by the linear projection (Xq,...,%X,_ 1, X)F>(Xg5...5%,_4), SO that
9,=%1p<9, ,isthesemidirect product. We are going to produce an infinite
presentation of 4 in terms of generators and relations on the case n = 3. By
the general formulas,

D3~ {by,3, 01,3, ba3 by 3, 013, A2
(ay,25 by,2), (al_,éal,sfh,z, bl_,;bl,Sbl,Z)s (al—,ébZ,3a1,27 b 2 af,éal,ﬂl,z),
(by,3 b1,2, a3,3), (22,3, af,ébz.aﬂh,z)a (@1,3 A1,25 @2,3)s (b2,3, a1.2, by 3)}
For an appropriate choice of generators, we obtain the relations
(a3 bisl=[a,3, bo3l=1 in G=ker(Z3>D,=(a; 2 by )

But this is not all. We will obtain a complete description of ¢ in considering
the projection p: C3\D; — C>\D,, p(x,, X5, X3) =(x;, x,). We have the follow-
ing picture (Figure 12) in an appropriate real plane section. The group 2, is
commutative with the generators a; ,, b, ,. So, all the relators of 4 are of the
form

" vl a'l bm N bm a" bm
[arlll,';bl‘z’ bl,ljz 1,2]’ [a;’ljz i b2’13,z 1,2], n, meZ.

Using prescription 3.3, we can rewrite them in terms of 4. Denote
ati=<ay s (@2,3b1,3)'a2,3(02,3b1 3)™"
(a1,3h2,3)"a1 3(a1,3b2 3) " "V"(ay,3b; 3)",
a33=<ay,3, ((a2,3b1,3)"a2 3(a2,3b1 3) "
(a1,302,3)"a1,3(a1,3b2,3) " ")"(@2,3b 3)",
51"5‘ ={by 3 ((az,ab1,3)"+ 1‘12,3(‘12,3171,3) ot
(al,sbz,a)"+ 'ay a(ay,3b2,3)7"" "(az,3by 3)"" Y,
E;'; =(by,3 ((a2,3b1,3)"" ‘ay,3(az,3b1,3) 7" !
(f11,3bz,3)nJr 1‘11,3(01,3172,3)_"_ 1)(“1,3b2,3)"+ D,

n, meZ.
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b, %

Then
Snm (=~ LT nmen, snm Tn,
g={a1,39 b1,3, a2,39 b2,3 I [a;l,gl’ (ai'll,gl) bil,';a;,gi]a [ag,’;u bg';]}
The three simplest relators are

- —1,-1 ~1
[a; 5 b15], [ass, a1,3b2,3a1,31,], [a;,3b5 304 3b5 301 3, ay,3b, a5 3].

After the substitution b}, 3 =4y 3b, a1 3, we have

La;,3 by 3], [a3,3, b5 5], [b’2,3a1,3b'2731, a2,3b1,3a;,§]
and we see that the third relation is not a consequence of the first two.

3.7. We can view the method used for the computation of the relations of 2,
as a general one in the real case of hyperplane arrangement: practically, we
have computed &, as an extension of the group gencrated by the set
{a; »» b; , 1 < n} by Z,_,, which is represented by the other generators a; ;, b; ;,
1 €i<j<n—1, that is by the elements such that the equations of the
corresponding hyperplanes do not contain x,,.

In the general case, we can do the same thing: divide the set of the
hyperplanes S into the subgroups S, where S, consists of the hyperplanes
whose equations contain x; and do not contain x;, [ = k+ 1. Rewrite the
equations of the hyperplanes from S, into the form x, = XfZ{ a,x; and define
an order in S:

a<b,ifaeS;, beS;,j>i or

k—1 k—1
a, bGSk, a= {xk+ z Otixi“—‘()}, b = {xk + Z ﬂixi = 0}’
i=1 i=1

a, < B, for some p <k, and a; = f;Vi:p <i< k—1,

that is S; < S, for j > i, and in one S, the order is lexigraphical.



122 A. LEIBMAN

If we define now a plane (¢, 5) in C” in the same way as for 2, (see (7)), this
order will be the original one, that is it will coincide with the order of s,(— c0),
where s=s,(t) is the equation of ae S. This order will also coincide with the
order of the intersections of every element aeS, with the elements of the
previous groups S,;, i < k—1.

The order of the intersections of elements of the same group is easily
defined: the intersection (a, b), where

a={x,+ X2 a;x; =0},

b={x,+ZI ] Bx;=0},
occurs with the junior

¢ = (T4 o — Bix = O);

we have only to define the place of this equation in the original hierarchy.

This method is especially useful in the case in which all the intersections of
the elements of the same group are double, as in the &, case. Then we can
make all the conjugations by the elements of the junior groups only. But, if
the deviation from this condition is not big, the method works as well.

3.8. As an illustration, we will compute the fundamental group of the B,
arrangement, formed by the following hyperplanes in C*

ai,j= {xj—x,-=0}, bi’j={Xj+xi=0}, Ci={xi=0}, 1 Sl,]én

There are fourfold intersections (a; ;, ¢;, by 4, ¢;) here, and to conjugate ¢, we
have to use the elements g, ;, which have already undergone a conjugation by
the moment of the intersection.

We provide the resulting list of relations below (1 <i<j<k<I<n):

(1> (aZkl,I—l"'ak.k+l, clal_—ll,l"'ak_i-ll.l; bZkI,l—l“'bk,k+lak—l,k”'al.k’ o,
where @, = a3}~ W
4 s
<2> (aZkI.Iﬂ"'ak.kn a: )
] > G
B3 (g™, a)
(4> (aa;.z-r"ai.kﬂ a.k)
i > 4j,
<5> (azkil—l"'ak.k+1 b. )
] s> Vi
6> (A" by
KTy (a7, by

<8> (bel.l—l"'bk.k+ 10 - 1,k""11,kskb1,k"'bk— I,k’ ai,j)
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0> (B, au)
<10 (b?,-,“""’f*“, 4.0

an (bbk,l‘1"'bk,k+1ak—l.k"'al.kckbl,k"'bk—-l.k’ bi,j)
<12y (B, by

<13 (b?;,-'-""b"-': ;)

Ly (@™, a ™, ayy)

L
<15> (bbu 1 b bt_’j,l—f"bj,jéf1aj—1,j"'ai+1.j’ ai,j)
<l6> (a g1 ) b],” 1 bJ-J‘+laj—l,j"'“lyicjbl-f"'bx‘*Lj’ bij)
-1 j+1 bi.l—l"'bi.j+1
A7) (afy » by s bij)
18y (@, ¢)
19> (@, ¢)
20> (blf'j,l—1"'bj.i+1“1‘-l.j"'aldcjbl-j“'bj"lvi, ¢)
Q@ (b = 1"'bi.j+1, cj)
(22) (e, ay )

23 (i p, ),

3.9. We worked with the generators of the fundamental group of the
complement of a hyperplane arrangement which were chosen in the following
way: these were the loops lying in a generic complex straight line and passing
along straight segments to the hyperplanes of the arrangement: one loop for
each hyperplane. One can ask, whether the condition that all of the segments
be in the same complex straight line is necessary for the loops to form a set of
generators. We investigate the case of a real arrangement in this section.

PROPOSITION. Let L,,...,L; be a set of hyperplanes defined by real
equations in C" and let the coordinates of the reference point O be real. Let a;,
i=1,...,d be the loop which passes along the segment of a real line from O to L,
bypassing L; for j # i by small arcs in the counterclockwise direction in the
complexification of the real line, then passes around L; and returns back
following the same path. Then the corresponding elements of the fundamental
group G=mn,(C"\| )i L)) generate it.

Proof. Draw an arbitrary straight line g R” intersecting all of the L, and
containing O. Reorder the hyperplanes according to their distance from O
measured along ¢. Firstly, if all of the segments joining O with the
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hyperplanes of the arrangement are contained in g, we have a system of
generators of G; it is obtained from the standard one a4, . . ., a; corresponding
to the complexification of g by an invertible transformation (see Figure 13).

When we rotate ¢ around O in a two-dimensional plane in R”, the
corresponding elements a; ,,...,a,, of G are being replaced by certain
conjugates only at the moments at which g passes through the intersections of
certain hyperplanes of the arrangement; but the element a, corresponding to
the hyperplane nearest to O along g stays unchanged (Figure 14). This means
that the loops corresponding to arbitrary segments joining O with L,
represent the same element a; of the group.

The element a, corresponding to the segment joining O with L, can get a
conjugation only by a, at the moment of passing through an intersection of
hyperplanes; continuing this reasoning, we see that the elements da,...,d)
corresponding to an arbitrary set of segments can be expressed in terms of
day,...,a,bythe rule a}=a}—LAf, where A;is a word in the alphabet {aF Vi< i}
Hence, conversely, the generators a,,...,a, can be expressed in terms of
ay,...,ay and the latter elements generate G.

3.10. COROLLARY OF THE PROOF. If a hyperplane L, can be joined with
O by a segment which does not intersect other hyperplanes, the same element
of G corresponds to any segment joining O with L.

a,

-1

i a
. i.q1 k.1 : H

Flg. 14. Qi a2 = Vi g0 Ye,q2 = Fq10 aj,qz—aj’q‘ —aj’ql for i >]> k.
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3.11. PROOF OF PROPOSITION 0.8. It is enough to prove that the
monotone broken line consisting of two links can be straightened by the help
of a homotopy in C"\S. Fix the end points P,, P; of the line and move its
middle point P, along a segment of a straight line, which does not meet any
intersections of hyperplanes of S, to the segment [Py, P;] (Figure 15). Until
P, arrives at a hyperplane of the arrangement, this movement does not cause
any problems: it is equivalent to a movement along the real axis of the
punctures; all the punctures should be passed around in the counterclockwise
direction in the complexifications of the segments [ P,, P, 1, [ P,, P5] (Figure
16). Passing of P, through a hyperplane is shown on Figure 17.
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Note added in proof: After the completion of our work on the typescript of
the paper, we found out that our procedure for calculating a presentation
of the fundamental group of the complement of an arrangement of
hyperplanes had been obtained earlier by W. Arvola, as described in Section
5.3 of the monograph: P. Orlik, and M. Terao, Arrangements of Hyper-
planes, Springer-Verlag, Berlin, Heidelberg, New York, 1992.



