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Abstract

By a result due to Furstenberg, a homeomorphism T of a compact space is distal if and only if it
possesses the property of IP∗-recurrence, meaning that for any x0 ∈ X, for any open neighborhood
U of x0, and for any sequence (ni) in Z, the set RU (x0) = {n ∈ Z : Tnx0 ∈ U} has a non-trivial
intersection with the set of finite sums {ni1 +ni2 + · · ·+nis : i1 < i2 < . . . < is, s ∈ N}. We show
that translations on compact nilmanifolds (which are known to be distal) are characterized by a
stronger property of IP∗

r-recurrence, which asserts that for any x0 ∈ X and any neighborhood U
of x0 there exists r ∈ N such that for any r-element sequence n1, . . . , nr in Z the set RU (x0) has
a non-trivial intersection with the set {ni1 + ni2 + · · ·+ nis : i1 < i2 < . . . < is, s ≤ r}. We also
show that the property of IP∗

r-recurrence is equivalent to an ostensibly much stronger property
of polynomial IP∗

r-recurrence. (This should be juxtaposed with the fact that for general distal
transformations the polynomial IP∗-recurrence is strictly stronger than the IP∗-recurrence.)

0. Introduction

Let (X,T ) be a topological dynamical system, meaning that X is a compact met-
ric space and T is a self-homeomorphism of X. Given a point x0 ∈ X and an open
neighborhood U of x0, define RU (x0) =

{
n ∈ Z : Tnx0 ∈ U

}
, the set of returns of x0

into U . Sets of returns reflect the properties of topological system, and it is of interest
to characterize (and/or distinguish between) dynamical systems by arithmetic proper-
ties of these sets. An example of this kind is provided by a theorem of Furstenberg on
sets of returns in distal systems. A system (X,T ) is said to be distal if for any dis-
tinct x, y ∈ X, infn∈Z dist(T

nx, Tny) > 0. Given a sequence n1, n2, . . . in Z, the set{
ni1 + · · · + nis : s ∈ N, i1 < · · · < is

}
of finite sums of distinct elements of this se-

quence is called an IP-set. A subset E of Z is called an IP∗-set if it intersects every IP-set.
Furstenberg’s theorem says that distal systems are characterized by the IP∗-recurrence
property:

Theorem 0.1. ([F], Theorem 9.11) A system (X,T ) is distal if and only if for any x0 ∈ X
and any open neighborhood U of x0 the set of returns RU (x0) is an IP∗-set.

Another relevant example involves translations on compact abelian groups. A set of
differences is a set of the form

{
ni − nj , j < i

}
, where (ni) is an infinite sequence in Z;

a subset E of Z is said to be a ∆∗-set if it has a nonempty intersection with every set of
differences in Z. A point x in a system (X,T ) is said to be almost automorphic if for any
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sequence (ni) in Z, Tnix −→ y implies T−niy −→ x. It is shown in [F], Theorem 9.13,
that a system has the ∆∗-recurrence property (that is, that every set of returns in the
system is a ∆∗-set) if and only if every point in the system is almost automorphic. Next,
by a theorem of Veech (see [V], Theorem 1.2; see also [AGN]) every point of a minimal(1)

system (X,T ) is almost automorphic if and only if the family {Tn, n ∈ Z} of powers of T
is equicontinuous. Now, it is not hard to see that for a minimal T the family {Tn, n ∈ Z}
is equicontinuous if and only if (X,T ) is isomorphic to a translation on a compact abelian
group(2). Thus, the recurrence property characterizing minimal group translations is that
of ∆∗.

Our goal in this paper is to provide a similar characterization of nilsystems, namely,
systems of the form (X,T ) where X is a nilmanifold (a compact homogeneous space of a
nilpotent Lie group G) and T is a niltranslation (a translation on X defined by an element
of G). The motivation for this study comes from the fact that nilsystems are intrincically
related to various problems arising in ergodic theory of multiple recurrence, combinatorics,
and number theory, and understanding the recurrence properties of niltranslations leads
to interesting applications in these areas. It is well known that nilsystems are distal
(see [AGH], [Ke1], [Ke2]), and thus are IP∗-recurrent; however, not every distal system
is a nilsystem, and thus there must be a stronger than IP∗ property of recurrence that
characterizes them.

For an integer r ∈ N and an r-element sequence n1, . . . , nr in Z, we call the set{
ni1 + · · · + nis : 1 ≤ s ≤ r, i1 < · · · < is

}
of sums of distinct elements of this sequence

an IPr-set. A set E ⊆ Z is called an IP∗
r-set if it has a nonempty intersection with

every IPr-set in Z. We say that a set is an IP∗
0-set if it is an IP∗

r-set for some r ∈ N.
IP∗

0-sets form a proper subfamily of the family of IP∗-sets: clearly, every IP∗
0-set is IP∗,

but not vice versa(3). A special class of nilsystems is provided by affine skew product
transofrmations of tori(4); it follows from [B], Theorem 7.7, that every such system has
the IP∗

0-recurrence property: for every x0 ∈ T
k and any open neighborhood U of x0 the

set of returns RU (x0) is an IP∗
0-set. On the other hand, one can show that not every

distal system is IP∗
0-recurrent (see [BL3], Section 1). It is tempting to conjecture that it

is the IP∗
0-recurrence property that characterizes the nilsystems. This, however, cannot be

(1) A system (X,T ) is minimal if it has no proper closed subsystems, or, equivalently, if the

orbit of every point of X is dense in X.
(2) The “only if” implication follows from the fact that for any x0 ∈ X one can define an

additive group structure on the orbit {Tnx0, n ∈ Z} by Tnx0 + Tmx0 = Tn+mx0, n,m ∈ Z,

and then extend it, with the help of equicontinuity, to all of X. This makes X a compact abelian

group on which T acts as a minimal translation.
(3) To see this, it is enough to exhibit an IP∗-set S which is not an IP-set. One can take, for

example S =
⋃∞

r=1 Sr, where Sr = {22
r

, 2 · 22
r

, 3 · 22
r

, . . . , r · 22
r

}, r ∈ N. Since for each r, Sr

is a dilation of the set {1, 2, ..., r}, S contains arbitrarily large IPr-sets, but it contains no IP-sets

since the distances between consecutive elements of S form a non-decreasing sequence which tends

to infinity.
(4) An affine skew product transformation of the k-dimensional torus Tk = R

k/Zk is defined

by the formula T (x1, . . . , xk) = (x1+α1, x2+a2,1x1+α2, . . . , xk+ak,k−1xk−1+· · ·+ak,1x1+αk)
with αi ∈ T and ai,j ∈ Z.
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exactly so: any recurrence property must be stable under passing to inverse limits whereas
inverse limits of nilsystems do not have to be nilsystems. Let us define a pre-nilsystem as
the inverse limit of a sequence of nilsystems. (Notice that, in contrast with the definition
of the so-called pro-nilsystems, in the definition of pre-nilsystems we don’t require the
nilpotency class of the nilsystems in the sequence to be bounded.) The following result
provides a characterization of pre-nilsystems in terms of IP∗

0-recurrence:

Theorem 0.2. Any pre-nilsystem (and so, any nilsystem) is IP∗
0-recurrent. Any IP∗

0-
recurrent system is a disjoint union of pre-nilsystems.

Remark. In analogy with IP∗
0-sets, one can define ∆∗

0-sets as those having a nonempty
intersection with every large enough finite set of differences. In contrast with IP∗/IP∗

0-
recurrence, the classes of ∆∗- and ∆∗

0-recurrent systems coincide. (These are translations
of compact abelian groups.)

The second statement of Theorem 0.2 is an easy corollary of the results from [HKM].
To prove the first statement, we use a coordinate approach. On any nilmanifold X one
has natural coordinates such that under the action of a niltranslation T the sequence of
coordinates of the image Tnx0 of any point x0 ∈ X is given by generalized polynomials (see
[BL2], Theorem A). We therefore need to deal with images of IP-sets under generalized
polynomial mappings; these images form a subclass of generalized polynomial IP-sets.
Conventional IP- and IPr-sets in Z can be viewed as the images of mappings ϕ:F(A) −→ Z

from the semigroup F(A) of finite subsets of A, for A = N and, respectively, for A =
{1, . . . , r}, defined by ϕ(α) =

∑
i∈α ai. Such a mapping ϕ is “linear” in the following sense:

ϕ(α ∪ β) = ϕ(α) + ϕ(β) whenever α, β ∈ F(A) are disjoint. Let H be an additive abelian
group; one can introduce the notion of polynomial mappings F(A) −→ H as follows. For
a mapping ϕ:F(A) −→ H and a set β ∈ F(A) let the β-derivative Dβϕ be the mapping
F(A \ β) −→ H defined by Dβϕ(α) = ϕ(α + β) − ϕ(α). Then we say that a mapping
ϕ:F({1, . . . , r}) −→ H is polynomial of degree ≤ d if for any disjoint β0, β1, . . . , βd ∈
F({1, . . . , r}), Dβ0Dβ1 · · ·Dβd

ϕ = 0. (See [BL1], Section 8.1.) Examples of quadratic (that

is, of degree ≤ 2) polynomial mappings are, in increasing generality, ϕ(α) =
(∑

i∈α ai
)2
,

ϕ(α) =
(∑

i∈α ai
)(∑

i∈α bi
)
=

∑
i,j∈α aibj , and ϕ(α) =

∑
i,j∈α ci,j , where ai, bj , ci,j ∈ H.

Generalized polynomial mappings are the mappings built from (conventional) polynomial
mappings using the operations of addition, multiplication, and taking the integer part.
(An example is ϕ =

[
[ϕ1]ϕ2 + ϕ3

]
ϕ4 + [ϕ5][ϕ6]ϕ7, which is comprised of the polynomial

mappings ϕ1, . . . , ϕ7.) Let us say that a generalized polynomial mapping ϕ has total degree
≤ D if the sum

∑
i degϕi of the degrees of all the “conventional” polynomial mappings ϕi

of which ϕ is comprised does not exceed D, and let us say that a generalized polynomial
mapping is constant free if all the ϕi vanish at ∅: ϕi(∅) = 0. Let us also say that a
generalized polynomial mapping is open if it is contained in the ideal generated by the
conventional constant-free polynomials of the ring of constant-free generalized polynomials.
(In other words, a generalized polynomial is open if it contains no “closed” summands of the
form [ϕ1] · · · [ϕk], where ϕi are generalized polynomials.) For x ∈ R let ‖x‖ = dist(x,Z).
The following result of Diophantine nature, which we use to prove Theorem 0.2, is of
independent interest:
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Theorem 0.3. (Cf. Theorem 1.11 below.) For any D ∈ N and ε > 0 there exists
r = r(D, ε) ∈ N such that for any open constant-free generalized polynomial mapping
ϕ: {1, . . . , r} −→ R of total degree ≤ D there exists a nonempty α ⊆ {1, . . . , r} for which
‖ϕ(α)‖ < ε.

The VIP-sets in Z
l are defined as the images

{
ϕ(α) : α ∈ F(N), α 6= ∅

}
of polynomial

mappings ϕ:F(N) −→ Z
l with ϕ(∅) = 0, and we say that a set E ⊆ Z

l is a VIP∗-set if
E has a nonempty intersection with every VIP-set in Z

l. Similarly, for all d, r ∈ N, we
define VIPd,r-sets as the images

{
ϕ(α) : α ⊆ {1, . . . , r}, α 6= ∅

}
of polynomial mappings

ϕ:F({1, . . . , r}) −→ Z
l of degree ≤ d and with ϕ(∅) = 0, and say that a set E ∈ Z

l is a
VIP∗

d,r-set if it has a nonempty intersection with every VIPd,r-set. We will also say that a

set E ∈ Z
l is a VIP∗

0-set if for any d ∈ N, E is an VIP∗
d,r-set for some r ∈ N. Theorem 0.3

now implies the following result:

Theorem 0.4. For any D, d ∈ N and ε > 0 there exists r = r(D, d, ε) ∈ N such that for
any l ∈ N and any open constant-free generalized polynomial mapping ϕ:Zl −→ R of total
degree ≤ D the set

{
n ∈ Z

l : ‖ϕ(n)‖ < ε
}
is a VIP∗

d,r-set.

Let G be a nilpotent Lie group; an l-parameter polynomial sequence in G is a mapping

g:Zl −→ G of the form T
p1(n)
1 · · ·T

pb(n)
b , n ∈ Z

l, where Ti ∈ G and pi are polynomials
Z
l −→ Z; the naive degree of g is defined as maxi deg pi.

(5) Using the fact that the coor-
dinates of a point of a nilmanifold under the action of a polynomial sequence of niltrans-
lations are generalized polynomials, we obtain as a corollary of Theorem 0.4 the following
strengthening of the first part of Theorem 0.2:

Theorem 0.5. (Cf. Theorem 1.12 below.) Let X be a nilmanifold with metric ρ (compatible
with the homogeneous space structure on X). For any a, d ∈ N and ε > 0 there exists
r = r(a, d, ε) ∈ N such that for any x0 ∈ X, any l ∈ N, and any l-parameter polynomial
sequence g of niltranslations on X of naive degree ≤ a and with g(0) = IdX , the set
RU (x0) =

{
n ∈ Z

l : ρ(g(n)x0, x0) < ε
}
is a VIP∗

d,r-set.

We say that a dynamical system (X,T ) is VIP∗-recurrent if for any x0 ∈ X and
any open neighborhood U of x0 the set of returns RU (x0) =

{
n ∈ Z : Tnx0 ∈ U

}
is a

VIP∗-set, and is VIP∗
0-recurrent if for any x0 ∈ X and any open neighborhood U of x0 the

set RU (x0) is a VIP∗
0-set. The VIP∗-recurrence property turns out to be strictly stronger

than that of the IP∗-recurrence: there exist distal but not VIP∗-recurrent systems.(6) As
for the VIP∗

0-recurrence, we get, as a corollary of Theorem 0.5, that, via Theorem 0.2,
VIP∗

0-recurrence is equivalent to IP∗
0-recurrence:

Theorem 0.6. Any pre-nilsystem is VIP∗
0-recurrent, and any VIP∗

0-recurrent system is a
disjoint union of pre-nilsystems.

(5) A more fundamental notion of degree of a polynomial sequence in a nilpotent group can

be defined as the number of “differentiations” which it takes in order to reduce the polynomial

sequence to a constant. For our purposes, however, the “naive” degree is quite sufficent.
(6) See [P], Corollary 5.1, where it is shown that for any nonlinear polynomial p:Z −→ Z

there exists an affine skew product transformation T such that liminfndist(T p(n)0, 0) > 0.
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In Section 1 of the paper we prove (a more precise version of) Theorems 0.3 and
0.4 and deduce Theorem 0.5 from them. In Section 2 we obtain the second statement of
Theorem 0.2.

1. Sets of visits of open bounded generalized polynomials with no constant

term to a neighborhood of zero.

Let A be a set and (H,+) be an abelian group. For r ∈ N we will denote by [1, r] the
interval {1, . . . , r} in N. We denote by F(A) the set of finite subsets of A, by A(d), d ∈ N,
the set of subsets of A of cardinality d, and by A(≤d), d ∈ N, the set of nonempty subsets
of A of cardinality ≤ d, A(≤d) =

⋃d
l=1A

(l).

We start with discussing polynomial mappings on F(A). We say that a mapping
ϕ:F(A) −→ H is linear if it satisfies the identity ϕ(α ∪ β) = ϕ(α) + ϕ(β) whenever
α, β ∈ F(A) are disjoint, and will denote the set of linear mappings F(A) −→ H by
Lin(A,H). A mapping ϕ ∈ Lin(A,H) is uniquely defined by its values at singletons: for
any α ∈ F(A), ϕα =

∑
a∈α ϕ̂({a}). We will call the mapping ϕ̂:A −→ H defined by

ϕ̂(a) = ϕ({a}) the producing function for ϕ; we then have ϕ(α) =
∑

a∈α ϕ̂(a), α ∈ F(A).

For a mapping ϕ:F(A) −→ H and β ∈ F(A) we define the β-derivative Dβϕ of ϕ by
Dβϕ(α) = ϕ(α∪β)−ϕ(α), α ∈ F(A\β). We say that a mapping ϕ is polynomial of degree
≤ d if for any d+ 1 pairwise disjoint sets β0, . . . , βd ∈ F(A) one has Dβd

· · ·Dβ0ϕ = 0.

We will denote by Pold(A,H) the group of polynomial mappings F(A) −→ H of
degree ≤ d. We will mainly deal with polynomial mappings “having zero constant term”;
let us denote by Pol0d(A,H) the subgroup

{
ϕ ∈ Pold(A,H) : ϕ(∅) = 0

}
of Pold(A,H).

Notice that Lin(A,H) = Pol01(A,H).

One can show (see [BL1], sections 8.3-8.5) that any polynomial mapping ϕ ∈
Pol0d(A,H) can be represented in the form ϕ(α) = Φ(αd), α ∈ F(A), for some mapping
Φ ∈ Lin(Ad, H), so that

ϕ(α) =
∑

v∈αd

Φ̂(v), α ∈ F(A), (1.1)

where Φ̂:Ad −→ H is the producing function for Φ. We will call Φ̂ a q-producing function
for ϕ.

The q-producing function for a polynomial mapping ϕ ∈ Pol0d(A,H) is not canonically

defined. A more natural is the t-producing function for ϕ, a function Φ̃:A(≤d) −→ H such
that for any α ∈ F(A),

ϕ(α) =
∑

u∈α(≤d)

Φ̃(u).

The t-producing function Φ̃ for ϕ is defined uniquely (and provides a natural approach
to the definition of polynomial mappings in the case H is a commutative semigroup). In

terms of Φ̃, ϕ is the sum of its homogeneous components, ϕ = ϕ1+ · · ·+ϕd, where for each
i, ϕi(α) =

∑
δ∈α(d) Φ̃(δ). To obtain the t-producing function Φ̃ for ϕ from a q-producing

function Φ̂ one simply sums up the values of Φ̂ at the elements of A(d) corresponding to
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the same element of A(≤d): for any u ∈ A(≤d),

Φ̃(u) =
∑

v=(a1,...,ad)∈αd

{a1,...,ad}=u

Φ̂(v).
(1.2)

Let B be a collection of pairwise disjoint finite subsets of A; we will call B a disjoint
subcollection in A; if |B| = s we will say that B is a disjoint s-subcollection. Given a disjoint
subcollection B in A, we have an injection F(B) −→ F(A) defined by γ 7→

⋃
γ, and we

will identify F(B) with its image in F(A). Given a polynomial mapping ϕ:F(A) −→
H, we call the polynomial mapping ϕ|F(B)

a subpolynomial of ϕ corresponding to the

disjoint subcollection B and denote it by ϕ↓B . Any disjoint subcollection B of a disjoint

subcollection in A induces the disjoint subcollection B′ =
{⋃

C : C ∈ B
}
in A; abusing

notation, we will denote the subpolynomial ϕ↓B′
of ϕ by ϕ↓B .

Let Φ̂:Ad −→ H be a q-producing function for a polynomial mapping ϕ:F(A) −→ H

of degree ≤ d and let Φ ∈ Lin(Ad, H) be the linear mapping produced by Φ̂. Given a
disjoint s-subcollection B = {B1, . . . , Bs} in A, one finds a q-producing function for the
subpolynomial ϕ↓B as follows. For any β ⊆ B we have

ϕ↓B(β) = ϕ
( ⋃

C∈β

C
)
= Φ

(( ⋃

C∈β

C
)d)

=
∑

v∈(
⋃

C∈β
C)d

Φ̂(v)

=
∑

C1,...,Cd∈β

∑

v∈C1×···×Cd

Φ̂(v) =
∑

(C1,...,Cd)∈βd

Φ(C1, . . . , Cd);
(1.3)

thus, the mapping Φ|Bd is a q-producing function for ϕ↓B .
The following proposition establishes the IP∗

r-recurrence property of polynomial map-
pings with values in the torus T = R/Z.

Proposition 1.1. (Cf. [B], Theorem 7.7) For any k, d ∈ N and ε > 0 there exists r =
r(k, d, ε) ∈ N such that for any ϕ1, . . . , ϕk ∈ Pol0d([1, r],T) there exists a nonempty α ∈
F([1, r]) such that dist(ϕi(α), 0) < ε for all i ∈ {1, . . . , k} (where “dist” is the distance on
T).

Proof. Put c = ⌈1/ε⌉ and partition the torus T into c intervals of length ≤ 1/ε. By the
Polynomial Hales-Jewett theorem (see [BL1], Theorem 0.10), there exists r ∈ N such that
for any partition of F([1, r]d×[k]) into c subsets there exist γ ⊂ [1, r]d×[k] and a nonempty
α ⊆ [1, r] such that γ ∩ (αd × [k]) = ∅ and the sets γ, γ ∪ (αd × {1}), . . . , γ ∪ (αd × {k})
belong to the same element of the partition. Let ϕ1, . . . , ϕk ∈ Pol0d([1, r],T). For each i let

Φ̂i: [1, r]
d −→ T be a q-producing function for ϕi. Define a mapping Φ̂: [1, r]d × [k] −→ T

k

by Φ̂(v, i) = Φ̂i(v), v ∈ [1, r]d, i ∈ [k], and let Φ ∈ Lin([1, r]d× [k],T) be the linear mapping

produced by Φ̂. Then, via Φ, the partition of T defines a partition of F([1, r]d × [k]) into c
subsets. Applying the Polynomial Hales-Jewett theorem, we can find γ ⊂ [1, r]d× [k] and a
nonempty α ⊆ [1, r] such that γ∩(αd× [k]) = ∅ and the sets γ, γ∪(αd×{1}), . . . , γ∪(αd×
{k}) belong to the same element of the partition; then for any i, Φ(γ) and Φ(γ∪(αd×{i}))
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belong to the same partition of T, and so, dist
(
Φ(γ),Φ(γ ∪ (αd × {i}))

)
< ε. Since

Φ(γ∪(αd×{i})) = Φ(γ)+Φ(αd×{i}) = Φ(γ)+ϕi(α), this implies that dist(0, ϕi(α)) < ε.

Recall that by ‖x‖ we denote the distance from x ∈ R to Z. We may then reformulate
Proposition 1.1 as follows:

Corollary 1.2. For any k, d ∈ N and ε > 0 there exists r = r(k, d, ε) ∈ N such that for
any ϕ1, . . . , ϕk ∈ Pol0d([1, r],R) there exists a nonempty α ∈ F([1, r]) such that ‖ϕi(α)‖ < ε
for all i ∈ {1, . . . , k}.

Next we show that if r is large enough, any polynomial mapping ϕ ∈ Pol0d([1, r],T)
has a subpolynomial whose q-producing function is arbitrarily small:

Proposition 1.3. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any
ϕ ∈ Pol0d([1, r],T) there exists a disjoint s-subcollection B in [1, r] such that a q-producing

function Φ̂B for ϕ↓B satisfies dist(Φ̂B , 0) < ε.

Proof. Take r0 = r(sd, d, ε) as in Corollary 1.2, and put A = [1, s]× [1, r0] (and r = |A| =

sr0). Let ϕ ∈ Pol0d([1, r],T). Let Φ̂: [1, r] −→ T be a q-producing function for ϕ and let

Φ ∈ Lin([1, r]d,T) be the linear mapping produced by Φ̂. For each i = (i1, . . . , id) ∈ [1, s]d

define a polynomial mapping ϕI ∈ Pol0d([1, r0],T) by ϕI(α) = Φ(({i1}×α)×· · ·×({id×α)}).
By Corollary 1.2 there exists α ⊆ [1, r0] such that dist(ϕI(α), 0) < ε for all I ∈ [1, s]d.
Take the disjoint s-subcollection B =

{
{i} × α : i ∈ [1, s]

}
in A. By the choice of α, for

any w ∈ Bd we have dist(Φ(w), 0) < ε. Since, by (1.3), Φ|Bd is a q-producing function for
ϕ↓B , we are done.

Replacing in Proposition 1.3 ε by ε/sd, we obtain:

Corollary 1.4. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈
Pol0d([1, r],T) there exists a disjoint s-subcollection B in [1, r] such that dist(ϕ↓B , 0) < ε.

By formula (1.2), any value of the t-producing function for ϕ ∈ Pol0d(A,R) is a sum of
less than dd values of the q-producing function for ϕ. Hence, Proposition 1.3 implies the
following corollary:

Proposition 1.5. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any
ϕ ∈ Pol0d([1, r],T) there exists a disjoint s-subcollection B in [1, r] such that the t-producing

function Φ̃B for ϕ↓B satisfies dist(Φ̃B , 0) < ε.

In terms of polynomial mappings with values in R, Proposition 1.5 takes the following
form:

Corollary 1.6. For any d, s ∈ N and ε > 0 there exists r ∈ N such that for any ϕ ∈
Pol0d([1, r],R) there exists a disjoint s-subcollection B in [1, r] such that the t-producing

function Φ̃B for ϕ↓B satisfies ‖Φ̃B‖ < ε.
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Now let ϕ ∈ Pol0d([1, r],R) be a polynomial mapping whose t-producing function

Φ̃ satisfies ‖Φ̃‖ < 1/rd. We will denote by [x] the integer and by {x} the fractional
parts of x ∈ R. If x ∈ R satisfies ‖x‖ < ε, then either {x} < ε or {x} > 1 − ε. If

x1, . . . , xn ∈ R satisfy {xi} < 1/n, i = 1, . . . , n, then
[∑n

i=1 xi
]
=

∑n
i=1[xi]. Thus, if Φ̃

satisfies {Φ̃} < 1/rd, then for any α ⊆ [1, r],

[ϕ(α)] =
[ ∑

u∈α(≤d)

Φ̃(u)
]
=

∑

u∈α(≤d)

[Φ̃(u)]

and so, [ϕ] is also a polynomial mapping, [ϕ] ∈ Pol0d([1, r],Z), with the t-producing function

[Φ̃].
For any x ∈ R \ Z, [x] = −[−x]− 1 and {−x} = 1− {x}, so, if x1, . . . , xn ∈ R satisfy

{xi} > 1− 1/n, i = 1, . . . , n, then
[∑n

i=1 xi
]
= −

[
−
∑n

i=1 xi
]
−1 = −

[∑n
i=1(−xi)

]
−1 = −

∑n
i=1[−xi]−1 =

∑n
i=1(−[−xi])−1.

Applying this to Φ̃, we see that if Φ̃ satisfies {Φ̃} > 1− 1/rd, then for any α ⊆ [1, r],

[ϕ(α)] =
[ ∑

u∈α(≤d)

Φ̃(u)
]
=

∑

u∈α(≤d)

(
−[−Φ̃(u)]

)
− 1.

So, [ϕ]+1 is a polynomial mapping, [ϕ]+1 ∈ Pol0d([1, r],Z), with the t-producing function

−[−Φ̃].

In the general case, when ‖Φ̃‖ < 1/rd, we may have neither {Φ̃} < 1/rd nor {Φ̃} >
1 − 1/rd. However, if ϕ is a homogeneous polynomial of degree l ≤ d (which means that

ϕ(α) =
∑

u∈α(l) Φ̃(u)), then, given s ∈ N, if r is large enough, by the classical Ramsey

theorem we can choose an s-element subset B of [1, r] such that either {Φ̃(u)} < 1/rd

for all u ∈ B(d) or {Φ̃(u)} > 1 − 1/rd for all u ∈ B(d). Identifying B with the “singleton
disjoint ’-subcollection’ {{b} : b ∈ B} in [1, r], we will therefore have [ϕ↓B ] ∈ Pol0d(B,Z)+e

with e ∈ {0,−1}.
For a general ϕ ∈ Pol0d([1, r],R), applying this argument to all homogeneous compo-

nents of ϕ and using a diagonal process, we arrive at the following lemma:

Lemma 1.7. For any d, s ∈ N there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],R) whose

t-producing function Φ̃ satisfies ‖Φ̃‖ < 1/rd there exists a (singleton) disjoint subcollection
B in [1, r] such that [ϕ↓B ] ∈ Pol0d(B,Z) + e with e ∈ {0,−1, . . . ,−d}.

Combining Lemma 1.7 with Corollary 1.6 we obtain:

Theorem 1.8. For any d, s ∈ N there exists r ∈ N such that for any ϕ ∈ Pol0d([1, r],R)
there exists a disjoint s-subcollection B in [1, r] such that [ϕ] ∈ Pol0d(B,Z) + e with e ∈
{0,−1, . . . ,−d}.

Using induction on k, one can extend Theorem 1.8 to the case of k polynomials:

Theorem 1.9. For any k, d1, . . . , dk, s ∈ N there exists r = r(k, (d1, . . . , dk), s) ∈ N such
that for any ϕi ∈ Pol0di

([1, r],R), i = 1, . . . , k, there exists a disjoint s-subcollection B in

[1, r] such that for every i ∈ {1, . . . , k}, [ϕi] ∈ Pol0di
(B,Z) + ei, with ei ∈ {0,−1, . . . ,−d}.
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A generalized polynomial is a function obtained from conventional polynomials using
the operations of taking the integer part, addition, and multiplication. We say that a
generalized polynomial ϕ is constant free if all polynomials involved in the expression of
ϕ have zero constant term. (More precisely, a generalized polynomial is constant free
if it has a representation in which all polynomials have zero constant term. A similar
convention applies to all the definitions below.) We say that a polynomial ϕ is open if it is
contained in the ideal, in the ring of constant free generalized polynomials, generated by
the ordinary polynomials. This is equivalent to saying that ϕ (or rather a representation
of ϕ) has no summand that is a product of “closed” generalized polynomials [ϕi]. Any
open constant-free generalized polynomial is representable in the form

ϕ =

m∑

j=1

[ϕj,1] · · · [ϕj,lj ]ϕj,0 (1.4)

where for every j, ϕj,1, . . . , ϕj,lj are open constant-free generalized polynomials and ϕj,0

are conventional polynomials with zero constant term.

We now introduce the notions of height, width, and degree for (a representation of) a
generalized polynomial ϕ:
The height h(ϕ) of ϕ is the maximum length of sequences of nested brackets in ϕ: we
put h(ϕ) = 0 if ϕ is a conventional polynomial and we say that h(ϕ) ≤ h if ϕ has a
representation (1.4) where for all j and all t ≥ 1, h(ϕj,t) ≤ h− 1.
The width w(ϕ) is the maximum number of components in ϕ itself and in all its components:
we put w(ϕ) = 1 if ϕ is a conventional polynomial and we say that w(ϕ) ≤ w if ϕ has a
representation (1.4) where w(ϕj,t) ≤ w for all j and all t ≥ 1 and also

∑m
j=1(lj + 1) ≤ w.

The degree d(ϕ) of ϕ is defined as usual under the assumption that deg[ϕ] = degϕ: we

say that d(ϕ) ≤ d if ϕ has a representation (1.4) with maxmj=1

(∑lj
t=0 degϕj,t

)
≤ d.

(For example, for ϕ(x) = [[x2+1]x][x3+2x]x+[x2](x+1)+x3 we have h(ϕ) = 2, w(ϕ) = 6,
and d(ϕ) = 7.)

We extend the above definitions to generalized polynomial mappings with domain
F(A), and will denote by GPol0d,h,w(A,H) the set (the algebra) of open constant-free
generalized polynomial mappings ϕ:F(A) −→ H, where H = R or Z, with d(ϕ) ≤ d,
h(ϕ) ≤ h, and w(ϕ) ≤ w. Given ϕ ∈ GPol0d,h,w(A,H) and a disjoint subcollection B in A,

we define the generalized polynomial mapping ϕ↓B ∈ GPol0d,h,w(B,H) as the restriction

of ϕ to the set F(B) considered as a subset of F(A).

The following theorem says that generalized polynomial mappings turn into ordinary
polynomial mappings after being restricted to a suitable disjoint subcollection in their
domain:

Theorem 1.10. For any k, d1, . . . , dk, h, w, s ∈ N there exists r = r(k, (d1, . . . , dk), h, w, s)
∈ N such that for any ϕi ∈ GPol0di,h,w

([1, r],R), i = 1, . . . , k, there exists a disjoint

s-subcollection B in [1, r] such that ϕi↓B ∈ Pol0di
(B,R), i = 1, . . . , k.
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Proof. We will use induction on h; when h = 0 the statement is trivial. Take r0 to be the
maximum of the integers r(l, (b1, . . . , bl), s) in Theorem 1.9 over all integers l ≤ kw and

all l-tuples (b1, . . . , bl) of nonnegative integers with
∑l

j=1 bj ≤ w
∑k

i=1 di. By induction
on h, let r be the maximum of the integers r(l, (d1, . . . , dl), h− 1, w, r0) in the assertion of
Theorem 1.10 over all integers l ≤ kw and all l-tuples (b1, . . . , bl) of nonnegative integers

with
∑l

j=1 bj ≤ w
∑k

i=1 di. Let ϕi ∈ GPol0di,h,w
([1, r],R), i = 1, . . . , k. For each i reprsent

ϕi in the form

ϕi =

mi∑

j=1

[ϕi,j,1] · · · [ϕi,j,li,j ]ϕi,j,0,

where for every i, j we have ϕi,j,0 ∈ Pol0di,j,0
([1, r],R) and for every t ≥ 1 we have ϕi,j,t ∈

GPol0di,j,t,h−1,w([1, r],R) with

∑mi

j=1(li,j + 1) ≤ w for all i and
∑li,j

t=0 di,j,t ≤ di for all i, j,

so that

∑k
i=1

∑mi

j=1(li,j + 1) ≤ kw and
∑k

i=1

∑mi

j=1

∑li,j
t=0 di,j,t ≤ w

∑k
i=1 di.

By the choice of r there exists a disjoint r0-subcollection B0 ⊂ F([1, r]) such that
ϕi,j,t↓B0

∈ Pol0di,j,t
(B0,R) for all i, j, t. Then by the choice of r0 there exists a disjoint

s-subcollection B in B0 such that for all i, j, t,
[
ϕi,j,t↓B

]
∈ Pol0di,j,t

(B,Z). Hence for every
i,

ϕi↓B =

mi∑

j=1

[
ϕi,j,1↓B

]
· · ·

[
ϕi,j,li,j↓B

]
ϕi,j↓B ∈ Pol0di

(B,R).

Combining Theorem 1.10 and Corollary 1.2, we obtain:

Theorem 1.11. For any k, d, h, w ∈ N there exists r = r(k, d, h, w) ∈ N such that
for any ϕ1, . . . , ϕk ∈ GPol0d,h,w([1, r],R) there exists a nonempty α ∈ F([1, r]) such that
‖ϕi(α)‖ < ε, i = 1, . . . , k.

Let X = G/Γ be a k-dimensional compact nilmanifold; we may and will assume that
X is connected. (Any nilmanifold is a subnilmanifold of a connected one.) Let ρ be a
metric on X (induced by a metric on G compatible with the Lie group structure thereon).
Fix a point x0 ∈ X, and let τ = (τ1, . . . , τk):X −→ [0, 1)k be Maltsev’s coordinates on
X centered at x0. The inverse mapping τ−1 is continuous, and the distance ρ(x, x0) from
x ∈ X to x0 is continuous with respect to the distance from τ(x) to the set of vertices
{0, 1}k of the cube [0, 1]k. (See, for example, [BL2], Section 1.5.)

Let g be an (l-parameter) polynomial sequence in G, that is, a mapping g:Zl −→ G of

the form g(n) = T
p1(n)
1 · · ·T

pb(n)
b , n ∈ Z

l, where T1, . . . , Tb ∈ G, p1, . . . , pb are polynomials
Z
l −→ Z; we define n-deg g, the naive degree of g, as maxbi=1 deg pi. Then for each i =

1, . . . , k, the sequences ψi(n) = τi(g(n)x0), n ∈ Z
c, of coordinates of x0 under the action of

g are open [0, 1)-valued generalized polynomials, with parameters depending only onX and
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n-deg g (see [BL2], Theorem A and Theorem A∗∗), and if g(0) = 1G, these polynomials
can be assumed to be constant-free. For any polynomial mapping ϕ ∈ Pold([1, r]),Z

c),
the composition mappings ψi◦ϕ:F([1, r]) −→ [0, 1), i = 1, . . . , k, are open constant-free
generalized polynomial mappings, with parameters only depending on X, d, and n-deg g.
From Theorem 1.11 we now obtain the following result:

Theorem 1.12. Let X = G/Γ be a nilmanifold with metric ρ. For any a, d ∈ N and ε > 0
there exists r = r(a, d, ε) ∈ N such that for any l, any l-parameter polynomial sequence g
in G with n-deg g ≤ a and g(0) = 1G, any x0 ∈ X, and any ϕ ∈ Pol0d([1, r],Z

l) there exists
a nonempty α ∈ F([1, r]) such that ρ

(
g(ϕ(α))x0, x0

)
< ε.

Remark. Theorem 1.12 easily extends to generalized polynomial sequences in nilpotent

groups, that is, to sequences of the form g(n) = T
p1(n)
1 · · ·T

pb(n)
b where pi are generalized

polynomials Zl −→ Z.

2. IP∗
0-recurrence implies approximability by nilsystems

In this section we prove the second statement of Theorem 0.2. Let (X, ρ) be a compact
metric space, T be a self homeomorphism of X, and assume that (X,T ) is IP∗

0-recurrent.
Then, in particular, (X,T ) is IP∗-recurrent, so by Theorem 0.1, (X,T ) is distal, and thus
is a disjoint union of minimal subsystems (see [F], corollary to Theorem 8.7). Hence, we
may assume that (X,T ) is minimal.

Now, by the way of contradiction, assume that a minimal system (X,T ) is not a
pre-nilsystem, that is, not an inverse limit of nilsystems; our goal is to show that there
exists a point x ∈ X and ε > 0 such that for every r ∈ N there exists a linear mapping
ϕ ∈ Lin([1, r],Z) such that ρ(Tϕ(α))x, x) > ε for every nonempty α ⊆ [1, r].

We will use the following result ([HKM] Theorem 1.3 and Corollary 4.2): for any r,
the maximal r-step pro-nilfactor of (X,T ) is defined by a closed T -invariant equivalence
relation RP[r] ⊆ X2 (called the regionally proximal relation of order r), with (x0, y0) ∈
RP[r] if and only if for any δ > 0 there exists a point x ∈ X and a mapping ϕ ∈ Lin([1, r],Z)
such that

ρ(x, x0) < δ and ρ(Tϕ(α)x, y0) < δ for all nonempty α ⊆ [1, r]. (2.1)

Our assumption that (X,T ) is not a pre-nilsystem is equivalent to the assumption that⋂∞
r=1 RP[r] 6= ∆, where ∆ is the diagonal of X2. Fix (x0, y0) ∈

⋂∞
r=1 RP[r] with x0 6= y0.

Let ε = infn∈Z ρ(T
nx0, T

ny0); since (X,T ) is distal, we have ε > 0. Since (X,T ) is minimal,
the orbit {Tnx0}n∈Z of x0 is dense in X. Let r ∈ N and let U ⊆ X be an open set. Choose
n ∈ Z such that Tnx0 ∈ U and choose δ > 0 such that ρ(Tnx, Tny) < ε/3 whenever
ρ(x, y) < δ. Find x ∈ X such that (2.1) holds and Tnx ∈ U . Then ρ(Tnx, Tnx0) < ε/3
and ρ(Tϕ(α)Tnx, Tny0) < ε/3 for all nonempty α ⊆ [1, r], and since ρ(Tnx0, T

ny0) ≥ ε,
we have that ρ(Tϕ(α)Tnx, Tnx) > ε/3 for all nonempty α ⊆ [1, r]. This proves that for
any r ∈ N the open set

Rr =
{
x ∈ X : there exists ϕ ∈ Lin([1, r],Z) such that ρ(Tϕ(α)x, x) > ε/3

for all nonempty α ∈ [1, r]
}
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is dense in X. By Baire category theorem
⋂∞

r=1Rr is nonempty, which gives us what we
wanted – a point x ∈ X such that for every r ∈ N there exists a mapping ϕ ∈ Lin([1, r],Z)
such that ρ(Tϕ(α))x, x) > ε/3 for every nonempty α ⊆ [1, r].
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