Orbits on a nilmanifold under the action of a polynomial sequence of translations

A. Leibman
Department of Mathematics
The Ohio State University
Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

September 25, 2006

Abstract

It is known that the closure \(\overline{\text{Orb}_g(x)} \) of the orbit \(\text{Orb}_g(x) \) of a point \(x \) of a compact nilmanifold \(X \) under a polynomial sequence \(g \) of translations of \(X \) is a disjoint finite union of subnilmanifolds of \(X \). Assume that \(g(0) = 1 _G \) and let \(A \) be the group generated by the elements of \(g \); we show in this paper that for almost all points \(x \in X \), \(\overline{\text{Orb}_g(x)} \) are congruent (that is, are translates of each other), with connected components of \(\overline{\text{Orb}_g(x)} \) equal to (some of) the connected components of \(\overline{\text{Orb}_A(x)} \).

1. Nilmanifolds, subnilmanifolds, polynomial sequences and orbits

Let \(X \) be a compact nilmanifold, that is, a compact homogeneous space of a (not necessarily connected) nilpotent Lie group \(G \). Then \(X \) is isomorphic to (and will be identified with) \(G/\Gamma \), where \(\Gamma \) is a closed uniform subgroup of \(G \), with \(G \) acting on \(X \) by left translations. We will denote by \(\pi \) the factorization mapping \(G \longrightarrow X \), and by \(1_X \) the point \(\pi(1_G) \), so that \(\pi(a) = a1_X, a \in G \).

We will list, without proofs, some elementary facts about nilmanifolds; for more details see [M], [L1], [L2] and [L3].

1.1. If \(X \) is not connected, it consists of finitely many isomorphic components, which may be treated independently; throughout the paper we will assume for simplicity that \(X \) is connected. The connectedness of \(X \) does not imply that \(G \) is connected; let \(G^o \) be the identity component of \(G \) and let \(\Gamma^o = \Gamma \cap G^o \). Then \(X = G^o/\Gamma^o \), so that \(X \) is a homogeneous space of the connected group \(G^o \). If \(X \) is interpreted this way, the elements of \(G \setminus G^o \) act on \(X \) not as translations but as unipotent affine transformations. (Example: the nilmanifold \(X = \left(\begin{array}{cc} 1 & \mathbb{R} \\ 0 & 1 \end{array} \right) / \left(\begin{array}{cc} 1 & \mathbb{Z} \\ 0 & 1 \end{array} \right) \) is isomorphic to the torus \(\mathbb{R}^2/\mathbb{Z}^2 \), on which the element \(\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \) of the group \(G = \left(\begin{array}{cc} 1 & \mathbb{R} \\ 0 & 1 \end{array} \right) \) acts as the transformation \((x, y) \mapsto (x + \alpha, y + x) \).

Conversely, if \(X \) is a nilmanifold corresponding to a group \(G \) and \(A \) is a nilpotent Lie group of unipotent affine transformations of \(X \), then the semidirect product \(\tilde{G} = G \rtimes A \)

Supported by NSF grant DMS-0345350.
is a nilpotent Lie group that contains both G and A, and X is a homogeneous space of \tilde{G} on which it acts by translations.

1.2. If the subgroup Γ is not discrete, then the connected component Γ^0 of Γ is a normal subgroup of G, and we may pass from G to G/Γ^0 without changing X (see [L1]). Thus, we may and will assume that Γ is a discrete subgroup of G.

1.3. After replacing the group G^o by its universal cover, we may and will assume that G^o is simply connected. One may then introduce Malcev coordinates on G^o, that is, a system of one-parameter subgroups $e_i(t)$, $t \in \mathbb{R}$, $i = 1, \ldots, d$, such that the elements e_1^t, \ldots, e_d^t generate Γ and any element a of G^o is uniquely representable in the form $a = e_1^{t_1} \cdots e_d^{t_d}$, $t_1, \ldots, t_d \in \mathbb{R}$. The “coordinate” mapping $\eta(t_1, \ldots, t_d) = a$ is a homeomorphism $\mathbb{R}^d \to G$, with $\eta(\mathbb{Z}^d) = \Gamma$. In coordinates, the multiplication in G^o is given by a polynomial mapping $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$.

Let us say that a mapping $\varphi: \mathbb{R}^k \times \mathbb{Z}^l \to G^o$ is polynomial if it is polynomial in coordinates, that is, if $\eta^{-1} \circ \varphi: \mathbb{R}^k \times \mathbb{Z}^l \to \mathbb{R}^d$ is a polynomial mapping. Since the change-of-Malcev-coordinates mapping is an invertible bi-polynomial transformation of \mathbb{R}^d, this definition does not depend on the choice of Malcev coordinates on G^o.

1.4. A subnilmanifold Y of X is a closed subset of X of the form $Y = Hx$, where H is a closed subgroup of G and $x \in X$. Since $\pi(G^o) = X$, after replacing H by $H \cap G^o$ one may assume that $H \subseteq G^o$. A subnilmanifold Y is a nilmanifold, since $Y \cong H/(a(\Gamma a^{-1}) \cap H)$ where a is any element of G with $\pi(a) = x$.

1.5. Given a closed subgroup H of G^o and a point $x \in X$, the set Hx may not be closed and so, may not be a subnilmanifold of X; Hx is closed iff $(a(\Gamma a^{-1}) \cap H$ is a uniform subgroup of H, where a is any element of $\pi^{-1}(x)$. In particular, $H1_X = \pi(H)$ is closed iff $H \cap \Gamma$ is uniform in H; we will say that H is rational in this case. There are only countably many rational closed subgroups in G.

We say that an element a of G is rational if $a^n \in \Gamma$ for some $n \in \mathbb{N}$. A closed subgroup H of G is rational iff rational elements are dense in H ([L3]).

We say that a point $x = \pi(a) \in X$ is rational if $x = \pi(a)$ where a is rational in G. A subnilmanifold Y of X is rational if it contains at least one rational point of X, and in this case rational points are dense in Y. X has countably many rational sub-nilmanifolds. For any point $x \in X$ there are only countably many distinct sub-nilmanifolds in X that contain x. (See [L3].)

1.6. Let H be a closed connected subgroup of G^o and let $\tau: \mathbb{R}^r \to H$ be Malcev coordinates on H. Then the mapping $\eta^{-1} \circ \tau: \mathbb{R}^r \to \mathbb{R}^d$ is polynomial, and thus in coordinates H is the image of a polynomial mapping. Let us say that a subset S of G^o is polynomial if $\eta^{-1}(S)$ is an algebraic subset of \mathbb{R}^d, that is, is defined by one or several polynomial equations; this definition does not depend on the choice of Malcev coordinates on G^o. Any closed connected subgroup H of G^o is a polynomial subset of G^o; indeed, Malcev coordinates on G^o can be constructed so that they extend Malcev coordinates on H, and in these coordinates $\eta^{-1}(H)$ is even a linear (coordinate) subspace of \mathbb{R}^d. Since a translation by an element $a \in G^o$ is an invertible bi-polynomial transformation of \mathbb{R}^d, the set aH is
polynomial in G^o as well.

Let us say that a set $P \subseteq X$ is *polynomial* in X if $P = \pi(S)$ where S is a polynomial subset in G^o. Note that a polynomial subset of X does not have to be closed in X. (It may even be dense in X, as a line with an irrational slope in the 2-dimensional torus $T^2 = (\mathbb{R}/\mathbb{Z})^2$.)

Let us say that a subset of \mathbb{R}^d, G^o or X is *countably polynomial* if it is a countable (or finite) union of polynomial subsets. Note that any proper countably polynomial subset is of zero (Lebesgue) measure and of first category in the corresponding space.

1.7. Let A be a closed (possibly, discrete) subgroup of G. For $x \in X$, we will denote by $\text{Orb}_A(x)$ the orbit of x under the action of A, $\text{Orb}_A(x) = Ax$, and by $\overline{\text{Orb}}_A(x)$ the closure of $\text{Orb}_A(x)$. By abuse of language, we will also refer to $\overline{\text{Orb}}_A(x)$ as the orbit of x under the action of A. It is shown in [L1] that for any $x \in X$, $\overline{\text{Orb}}_A(x)$ is a (connected or disconnected) subnilmanifold of X. (See also [Le] and [Sh].) For any $x \in X$, the action of A on $\overline{\text{Orb}}_A(x)$ is minimal, that is, $\overline{\text{Orb}}_A(y) = \overline{\text{Orb}}_A(x)$ for any $y \in \overline{\text{Orb}}_A(x)$. It follows that $X = \bigcup_{x \in X} \overline{\text{Orb}}_A(x)$ is a partition of X. In particular, if $\overline{\text{Orb}}_A(x) = X$ for a point $x \in X$, then $\overline{\text{Orb}}_A(y) = X$ for all $y \in X$.

The orbits of distinct points may not be translates of each other, and may even have different dimensions, as the following examples demonstrate:

1.8. Examples.

1. Let $G = \left\{ \left(\begin{array}{ccc} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right) \right\}, \ x_1, x_2, x_3 \in \mathbb{R}$ and $\Gamma = \left\{ \left(\begin{array}{ccc} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right), \ x_1, x_2, x_3 \in \mathbb{Z} \right\}$; then $X = G/\Gamma$ is identified with the 2-dimensional torus $T^2 = (\mathbb{R}/\mathbb{Z})^2$ with coordinates $x_2, x_3 \in \mathbb{T}$. Let $a = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \in G$, then the action of a on X is given by $a(x_2, x_3) = (x_2, x_3 + ax_2) \mod 1,$ $(x_2, x_3) \in X$. (Equivalently, without even mentioning nilpotent groups, $X = T^2$ and a is the unipotent transformation of X defined by this formula.) Let $A = \{a^n\}_{n \in \mathbb{Z}}$. Then for $x = (x_2, x_3) \in X$, $\overline{\text{Orb}}_A(x) = \{ (x_2, u), \ u \in \mathbb{T} \} \simeq \mathbb{T}$ if x_1 is irrational, and is the finite set $\{ (x_2, nx_1), \ n \in \mathbb{N} \}$ if x_1 is rational.

2. Now let $G = \left\{ \left(\begin{array}{ccc} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right) \right\}$ and $\Gamma = \left\{ \left(\begin{array}{ccc} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right), \ x_1, x_2, x_3 \in \mathbb{Z} \right\}$; $X = G/\Gamma$ is then the 3-dimensional *Heisenberg manifold*. Let $a = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \in G$ where α is an irrational number; then the action of a on X is given by $ax = \left(\begin{array}{ccc} 1 & x_1 + \alpha x_3 \alpha x_2 \\ 0 & 1 \end{array} \right) \mod \Gamma, x = \left(\begin{array}{ccc} 1 & x_1 \alpha x_2 \\ 0 & 0 \end{array} \right) \in X$. Let $A = \{a^n\}_{n \in \mathbb{Z}}$ and $x = \left(\begin{array}{ccc} 1 & x_1 \alpha x_2 \\ 0 & 0 \end{array} \right) \in X$. If α and αx_2 are rationally independent, that is, if $x_2 \not\in \mathbb{Q} + \frac{1}{\alpha} \mathbb{Q},$ the orbit of $x = \left(\begin{array}{ccc} 1 & x_1 \alpha x_2 \\ 0 & 0 \end{array} \right)$ is the 2-dimensional torus $\overline{\text{Orb}}_A(x) = \left\{ \left(\begin{array}{ccc} 1 & u \alpha x_2 \\ 0 & 0 \end{array} \right), \ u \in \mathbb{T} \right\}$. Otherwise $\overline{\text{Orb}}_A(x)$ is a 1-dimensional torus or the union of several 1-dimensional tori; for example, if $x_2 = 0$ or $x_2 = \frac{1}{\alpha},$ then $\overline{\text{Orb}}_A(x) = \left\{ \left(\begin{array}{ccc} 1 & u \alpha x_2 \\ 0 & 0 \end{array} \right), \ u \in \mathbb{T} \right\}$.
we will call “generic” below); (ii) any “non-generic” orbit is a proper subnilmanifold of the “generic” one; and (iii) the points having a “non-generic” orbit are all contained in a countable union of proper subnilmanifolds of X. We will show that (i) and (ii) always hold; (iii) may fail (see example 2.4 below), and must be replaced by a weaker statement:

1.10. Theorem. Let A be a closed subgroup of G. There exists a closed subnilmanifold Y_A of X such that

(a) for any $x \in X$ the orbit $\overline{\Orb_A(x)}$ is congruent to some subset of Y_A;

(b) there exists a proper countably polynomial subset $P \subset X$ such that for all $x \notin P$ the orbit $\overline{\Orb_A(x)}$ is congruent to Y_A.

This theorem will be proven in Section 2. We will refer to the “standard” orbit Y_A in the formulation of the theorem as the generic orbit for A.

1.11. A (multiparameter) polynomial sequence in G is a sequence of the form $g(n) = a_1(n) \ldots a_r(n)$, $n \in \mathbb{Z}^l$, where $a_1, \ldots, a_n \in G$ and p_1, \ldots, p_r are polynomials $\mathbb{Z}^l \to \mathbb{Z}$. In the terminology introduced above, a polynomial sequence is just a polynomial mapping $\mathbb{Z}^l \to G$. For $x \in X$ we will denote by $\Orb_g(x)$ the orbit of x under the action of g, $\Orb_g(x) = g(\mathbb{Z}^l)x = \{g(n)x, n \in \mathbb{Z}^l\}$, and by $\overline{\Orb_g(x)}$ the closure of $\Orb_g(x)$; by abuse of language, we will also refer to $\overline{\Orb_g(x)}$ as the orbit of x under the action of g. It is shown in [L2] that $\overline{\Orb_g(x)}$ is of the form $\bigcup_{i=1}^L Hx_i$, where H is a connected closed subgroup of G and $x_1, \ldots, x_L \in X$, and thus is either a connected subnilmanifold of X or the union of a finite collection of pairwise disjoint connected subnilmanifolds of same dimension. Let us call such a union a FU-subnilmanifold; in particular, any (connected or disconnected) subnilmanifold of X is a FU-subnilmanifold.

Let us say that a FU-subnilmanifold is rational if all its connected components are rational subnilmanifolds. It is shown in [L3] that for any rational point x of X, $\overline{\Orb_g(x)}$ is a rational FU-subnilmanifold.

1.12. The orbits under the action of a polynomial sequence do not have to partition X; in the following example, due to Frantzkinakis and Kra, the generic orbit is the whole space X, whereas nongeneric orbits are proper subnilmanifolds of X.

Example. Let X be the 3-dimensional torus \mathbb{T}^3 and let a and b be the transformations of X defined by $ax = (x_1 + \alpha, x_2 + 2x_1 + \alpha, x_3)$ and $bx = (x_1, x_2, x_3 + \alpha)$, $x = (x_1, x_2, x_3) \in X$. (As mentioned in 1.1 above, since a and b are commuting unipotent transformations of X they can be viewed as elements of a nilpotent Lie group for which X is a homogeneous space.) Define $g(n) = a^n b^{n^2}$, $n \in \mathbb{Z}$. Then, for $x = (x_1, x_2, x_3)$, one has $g(n)x = (x_1 + n\alpha, x_2 + 2nx_1 + n^2\alpha, x_3 + n^2\alpha)$. If x_1 is irrational, $\overline{\Orb_g(x)} = X$. If x_1 is rational, $\overline{\Orb_g(x)}$ is a proper subtorus or a union of several 2-dimensional subtori of X. For example, if $x_1 = 0$, $\overline{\Orb_g(x)} = \{(u, v, v), u, v \in \mathbb{T}\}$.

1.13. We will show that, like in the case of a linear action, under the action of a polynomial sequence g almost all points of X have congruent orbits:
Theorem. Let \(g \) be a polynomial sequence in \(G \).

I. There exists a closed FU-subnilmanifold \(Y_g \) of \(X \) such that

(a) for any \(x \in X \) the orbit \(\text{Orb}_g(x) \) is congruent to some subset of \(Y_g \);
(b) there exists a proper countably polynomial subset \(P \subset X \) such that for all \(x \notin P \) the orbit \(\text{Orb}_g(x) \) is congruent to \(Y_g \).

II. Assume that \(g(0) = 1_G \), let \(A \) be the subgroup of \(G \) generated by the elements of \(g \) and let \(Y_A \) be the generic orbit for \(A \). Then \(Y_g \) consists of one or several components of \(Y_A \); in particular, if \(Y_A \) is connected, \(Y_g = Y_A \).

Part I of this theorem will be proved in Section 2, Part II will be proved in Section 4. In Section 3 we study the property of “normality” of generic orbits. In Section 5 we investigate the orbit of a subnilmanifold of \(X \).

2. The generic orbits

2.1. Theorem 1.10 and (the first part of) Theorem 1.13 are corollaries of the following simple general fact:

Theorem. Let \(M \) be a set and let \(\varphi: \mathbb{R}^k \times M \to G \) be a mapping; assume that for each fixed \(m \in M \), \(\varphi \) is polynomial with respect to \(\mathbb{R}^k \), and for each \(t \in \mathbb{R}^k \) the set \(Y_t = \pi(\varphi(t,M)) \) is a rational FU-subnilmanifold of \(X \). Then there exist a FU-subnilmanifold \(Y_\varphi \) of \(X \) and a proper countably polynomial subset \(S \subset \mathbb{R}^k \) such that

(a) \(Y_t \subseteq Y_\varphi \) for all \(t \in \mathbb{R}^k \);
(b) \(Y_t = Y_\varphi \) for all \(t \notin S \).

Proof. Let \(Y_\varphi \) be the minimal FU-subnilmanifold of \(X \) such that \(Y_t \subseteq Y_\varphi \) for all \(t \in \mathbb{R}^k \). Assume that \(Z \) is a rational FU-subnilmanifold of \(X \) such that \(Z \nsubseteq Y_\varphi \); then there exists \(t_0 \in \mathbb{R}^k \) such that \(Y_{t_0} \nsubseteq Z \). Let \(Z_1, \ldots, Z_s \) be connected components of \(Z \) and let \(H_1, \ldots, H_s \) be connected closed subgroups of \(G^o \) such that \(Z_i = \pi(H_i), i = 1, \ldots, s \). There exists \(m_0 \in M \) such that \(\varphi(t_0,m_0) \notin \bigcup_{i=1}^s H_i \). Each \(H_i \) is a polynomial subset of \(G^o \), and the mapping \(t \to \varphi_t(m_0), t \in \mathbb{R}^k \), is polynomial, thus the set \(S_Z = \{ t \in \mathbb{R}^k : \varphi(t,m_0) \in \bigcup_{i=1}^s H_i \} \) is a proper polynomial subset of \(\mathbb{R}^k \). For any \(t \notin S_Z \) we have \(\varphi(t,m_0) \notin Z \) and so, \(Y_t \neq Z \). We now put \(S = \bigcup S_Z \), where \(Z \) runs over the set of rational FU-subnilmanifolds of \(X \) (which is countable by 1.5).

2.2. We will now deduce a generalization of Theorem 1.10:

Theorem. Let \(V \) be a connected subnilmanifold of \(X \), let \(K \) be a connected component of \(\pi^{-1}(V) \) and \(A \) be a closed subgroup of \(G \). There exists a closed subnilmanifold \(Y_{V,A} \) of \(X \) such that

(a) for any \(x \in V \) one has \(\text{Orb}_A(x) \subseteq aY_{V,A} \) whenever \(a \in K \), \(\pi(a) = x \);
(b) there exists a proper countably polynomial subset \(P \subset V \) such that for any \(x \in V \setminus P \) one has \(\text{Orb}_A(x) = aY_{V,A} \) whenever \(a \in K \), \(\pi(a) = x \).

We call the subnilmanifold \(Y_{V,A} \) the generic orbit for \(A \) on \(V \); in the case \(V = X \), \(Y_{V,A} \) is just the generic orbit for \(A \) and will be denoted by \(Y_A \).
Proof. We may assume that \(\dim V \geq 1 \), \(V \ni 1_X \) and \(K \) is a connected closed subgroup of \(G^0 \). Let \(\tau : \mathbb{R}^r \rightarrow V \) be a (Malcev) coordinate system on \(K \). Define a mapping \(\varphi : \mathbb{R}^r \times A \rightarrow G \) by \(\varphi(t, b) = \tau(t)^{-1}b\tau(t) \). Then \(\varphi \) is a polynomial mapping, and for each \(t \in \mathbb{R}^k \) and \(a = \tau(t) \) the set

\[
Y_t = \overline{\pi(\varphi(t, A))} = \overline{\pi(a^{-1}Aa)} = \overline{a^{-1}Aa1_X} = \overline{\text{Orb}_{a^{-1}Aa}(1_X)}
\]

is a rational subnilmanifold of \(X \). By Theorem 2.1, there exist a FU-subnilmanifold \(Y_{V,A} \subseteq X \) and a proper countably polynomial subset \(S \subseteq \mathbb{R}^k \) such that \(Y_t \subseteq Y_{V,A} \) for all \(t \in \mathbb{R}^k \) and \(Y_t = Y_{V,A} \) for all \(t \in \mathbb{R}^k \setminus S \). Since all \(Y_t \) are subnilmanifolds, \(Y_{V,A} \) is also a subnilmanifold. Finally, for any \(x \in V \), \(x = \pi(a) \) with \(a = \tau(t) \in K \), we have

\[
\text{Orb}_A(x) = \overline{Ax} = \overline{Aa1_X} = \overline{a^{-1}Aa1_X} = \overline{\tau(t)^{-1}A\tau(t)}1_X = \overline{\pi(\varphi(t, A))} = aY_t,
\]

so \(\text{Orb}_A(x) \subseteq aY_{V,A} \), and \(\text{Orb}_A(x) = aY_{V,A} \) whenever \(x \notin P = \pi(\tau(S)) \).

2.3. We generalize Theorem 1.13.I in a similar manner:

Theorem. Let \(V \) be a connected subnilmanifold of \(X \), let \(K \) be a connected component of \(\pi^{-1}(V) \) and let \(g : \mathbb{Z}^l \rightarrow G \) be a polynomial sequence in \(G \). There exists a closed FU-subnilmanifold \(Y_{V,g} \) of \(X \) such that

(a) for any \(x \in V \) one has \(\overline{\text{Orb}_g(x)} \subseteq aY_{V,g} \) whenever \(a \in K \), \(\pi(a) = x \);

(b) there exists a proper countably polynomial subset \(P \subset V \) such that for any \(x \in V \setminus P \) one has \(\overline{\text{Orb}_g(x)} = aY_{V,g} \) whenever \(a \in K \), \(\pi(a) = x \).

We call the FU-subnilmanifold \(Y_{V,g} \) the generic orbit for \(g \) on \(V \); in the case \(V = X \), \(Y_{V,g} \) is just the generic orbit for \(g \) and will be denoted by \(Y_g \).

Proof. We may assume that \(g(0) = 1_G \), \(\dim V \geq 1 \), \(V \ni 1_X \) and \(K \) is a connected closed subgroup of \(G^0 \). Let \(\tau : \mathbb{R}^r \rightarrow V \) be a (Malcev) coordinate system on \(K \). Define a mapping \(\varphi : \mathbb{R}^r \times \mathbb{Z}^l \rightarrow G \) by \(\varphi(t, n) = \tau(t)^{-1}g(n)\tau(t) \), then \(\varphi \) is a polynomial mapping. For \(t \in \mathbb{R}^k \) let \(Y_t = \overline{\pi(\varphi(t, \mathbb{Z}^l))} \). Putting \(a = \tau(t) \), we get

\[
Y_t = \overline{\pi(\varphi(t, \mathbb{Z}^l))} = \overline{\pi(a^{-1}g(\mathbb{Z}^l)a)} = \overline{a^{-1}g(\mathbb{Z}^l)a1_X} = \overline{\text{Orb}_{g,a}(1_X)},
\]

where \(g^a \) is the polynomial mapping \(g^a(n) = a^{-1}g(n)a \), \(n \in \mathbb{Z}^l \). Hence, \(Y_t \) is a rational FU-subnilmanifold of \(X \). By Theorem 2.1, there exist a FU-subnilmanifold \(Y_{V,g} \subseteq X \) and a proper countably polynomial subset \(S \subseteq \mathbb{R}^k \) such that \(Y_t \subseteq Y_{V,g} \) for all \(t \in \mathbb{R}^k \) and \(Y_t = Y_{V,g} \) for all \(t \in \mathbb{R}^k \setminus S \). For any \(x \in V \), \(x = \pi(a) \) with \(a = \tau(t) \in K \), we have

\[
\text{Orb}_g(x) = \overline{g(\mathbb{Z}^l)x} = \overline{g(\mathbb{Z}^l)a1_X} = \overline{a^{-1}g(\mathbb{Z}^l)a1_X} = \overline{a^{-1}g(\mathbb{Z}^l)\tau(t)1_X} = \overline{a(\pi(\varphi(t, \mathbb{Z}^l)))} = aY_t,
\]

so \(\text{Orb}_g(x) \subseteq aY_{V,g} \), and \(\text{Orb}_g(x) = aY_{V,g} \) whenever \(x \notin P = \pi(\tau(S)) \).

2.4. The following example shows that the set of points having non-generic orbits may not be a union of subnilmanifolds of \(X \).
Example. Let $G = \left\{ \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ x_{3,1} & x_{3,2} & x_{3,3} \end{pmatrix}, \ x_{i,j} \in \mathbb{R} \right\}$, $\Gamma = \left\{ \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ 0 & 1 & x_{2,2} \\ 0 & 0 & 1 \end{pmatrix}, \ x_{i,j} \in \mathbb{Z} \right\}$ and $X = G/\Gamma$. Let $b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, where α is an irrational number, and $A = \{ b^n \}_{n \in \mathbb{Z}}$.

For $a = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ 0 & 1 & x_{2,2} \\ 0 & 0 & 1 \end{pmatrix} \in G$ one finds that $a^{-1} b^n a = \begin{pmatrix} 1 & n \alpha & n \alpha x_{2,4} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $n \in \mathbb{Z}$. So, the generic orbit for A is the 3-dimensional torus $Y_A = \begin{pmatrix} 1 \nu \nu \nu \end{pmatrix}$; when the numbers $\alpha, \alpha x_{2,3}, \alpha x_{2,4}$ are rationally dependent, the point $\pi(a)$ has a nongeneric orbit, which is a 1- or a 2-dimensional subtorus of Y_A.

Let $Q = \left\{ \begin{pmatrix} 1 & x_{1,1} & x_{1,2} \\ 0 & 1 & x_{2,3} \\ 0 & 0 & 1 \end{pmatrix}, \ x_{i,j} \in \mathbb{R} \right\} \subset G$, then every $x \in \pi(Q)$ has a 2-dimensional nongeneric orbit. Q is a connected polynomial subset of G with $\pi(Q)$ dense in X.

3. The normality of generic orbits

If g is a polynomial sequence in G with generic orbit Y_g on X and x is a point of X having generic orbit under the action of g, then $\overline{\text{Orb}_g}(x) = aY_g$ for all $a \in G^o$ with $\pi(a) = x$. This gives us some additional information about generic orbits.

3.1. Let us say that a subnilmanifold Y of X is normal if $Y = Hx$ where $x \in X$ and H is a normal subgroup of G^o.

3.2. The importance of the notion of normality is manifested by the following fact:

Proposition. Let Y be a connected subnilmanifold of X, $Y = Hx$ where $x \in X$ and H is a connected closed subgroup of G^o. The following are equivalent:
(i) Y is normal;
(ii) the sets Hy are closed in X for all $y \in X$;
(iii) the subnilmanifolds aY, $a \in G^o$, partition X.

Proof. If Y is normal then H is normal in G^o, so $aH = Ha$ and thus, $aY = Hax$ for all $a \in G^o$. The sets aH, $a \in G^o$, are closed and the sets Hax, $a \in G^o$, partition X, so we have (ii) and (iii).

Assume that the sets Hy are all closed. This means that the sets $\pi(Ha)$, $a \in G^o$, are closed, and so, the sets $\pi(a^{-1}Ha)$, $a \in G^o$, are closed. Thus, for any $a \in X$, $a^{-1}Ha$ is a rational subgroup of G^o; since there are only countably many of such and $a^{-1}Ha$ continuously depends on a, $a^{-1}Ha = H$ for all $a \in G^o$.

Let now the sets aY, $a \in G^o$, partition X. We may assume that $x = 1_X$, so that $Y = \pi(H)$ and $1_X \in Y$. Then for any $\gamma \in \Gamma^o$, γY contains 1_X, thus $\gamma Y = Y$. Let $\gamma \in \Gamma^o$; then $\gamma H\Gamma^o = H\Gamma^o$ and, since H is connected, $\gamma H = H\gamma'$ for some $\gamma' \in \Gamma^o$. So, $\gamma H \gamma^{-1} = H\gamma' \gamma^{-1}$, and since $\gamma H \gamma^{-1}$ is a subgroup of G^o, $\gamma H \gamma^{-1} = H$. It remains to apply the following lemma:
3.3. Lemma. If a subgroup H of G^o is normalized by Γ^o then H is normal in G^o.

Sketch of the proof. G^o is an exponential group, which means that for any $a \in G^o$ there exists a one-parametric flow $t \to a^t$, $t \in \mathbb{R}$, passing through a. Let $a \in G^o$ be such that $a^{t_0} \in \Gamma$ for some nonzero $t_0 \in \mathbb{R}$. The condition “a^t normalizes H” is polynomial with respect to t, so, since a^{nt_0} normalizes H for all $n \in \mathbb{Z}$, a^t normalizes H for all $t \in \mathbb{R}$. G^o is generated by elements $a \in G^o$ with $a^{t_0} \in \Gamma$ for some nonzero $t_0 \in \mathbb{R}$, thus G^o normalizes H. ■

3.4. If Y is a normal sub-nilmanifold of X, the factor-nilmanifold X/Y is defined. Indeed, assume that $1_X \in Y$ and let H be the closed normal subgroup of G^o such that $Y = \pi(H)$. Then $\pi^{-1}(Y) = H\Gamma^o$ is a closed uniform subgroup of G^o; define $Z = G^o/(H\Gamma^o)$. Z is a nilmanifold, and the fibers of the natural mapping $X \longrightarrow Z$ are translates of Y.

3.5. We will now show:

Theorem. Let A be a subgroup of G and Y_A be the generic orbit for A. The connected components of Y_A are normal sub-nilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.2, of points whose orbits under the action of A are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Then, by Theorem 2.2, for any $\gamma \in \Gamma^o$, $\operatorname{Orb}_A(1_X) = \overline{\operatorname{Orb}_A}(\pi(\gamma)) = \gamma Y_A$. So, $\gamma Y_A = Y_A$ for all $\gamma \in \Gamma^o$. Let H be the closed subgroup of G^o such that $Y_A = \pi(H)$ and let H^o be the identity component of H. Let $\gamma \in \Gamma^o$, then $\gamma H\Gamma^o = H\Gamma^o$, and $\gamma H^o = H^o c' \gamma'$ for some $c \in H$ and $\gamma' \in \Gamma^o$. So $\gamma H^o \gamma^{-1} = H^o c' \gamma' \gamma^{-1}$, and since $\gamma H^o \gamma^{-1}$ is a subgroup of G^o, $\gamma H^o \gamma^{-1} = H^o$. Hence, H^o is normalized by Γ^o; by Lemma 3.3, H^o is normal in G^o. ■

3.6. Similarly, we have

Theorem. If Y_g is the generic orbit for a polynomial sequence g in G then the connected components of Y_g are normal sub-nilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.3, of points whose orbits under the action of g are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Then, by Theorem 2.3, for any $\gamma \in \Gamma^o$, $\overline{\operatorname{Orb}_g}(1_X) = \overline{\operatorname{Orb}_g}(\pi(\gamma)) = \gamma Y_g$. So, $\gamma Y_g = Y_g$ for all $\gamma \in \Gamma^o$. Let H be the connected closed subgroup of G^o such that $Y_g = \bigcup_{i=1}^n Hx_i$. Let $\gamma \in \Gamma^o$, then $\gamma H = Hc\gamma'$ for some $c \in G^o$ and $\gamma' \in \Gamma^o$. So $\gamma H \gamma^{-1} = Hc\gamma' \gamma^{-1}$, and since $\gamma H \gamma^{-1}$ is a subgroup of G^o, $\gamma H \gamma^{-1} = H$. Hence, H is normalized by Γ^o; by Lemma 3.3, H is normal in G^o. ■

3.7. Let us informally describe the picture we have got. Let A be a subgroup of G. If $\overline{\operatorname{Orb}_A}(x) = X$ for some point $x \in X$ then $\overline{\operatorname{Orb}_A}(y) = X$ for all $y \in X$. Otherwise, the generic orbit Y_A for A is a proper sub-nilmanifold of X. Let Y be a connected component of Y_A, then Y is normal in X and thus the factor-nilmanifold $Z = X/Y$ is defined; the fibers of the projection mapping $\eta:X \longrightarrow Z$ are translates of Y. A acts on Z in a finite way; after passing to a subgroup of finite index in A we may assume that the action of A on Z is trivial, and A acts only on the fibers of η. For almost every $z \in Z$ the action of A on $\eta^{-1}(z)$ is minimal, that is, the sub-nilmanifold $\eta^{-1}(z)$ is the orbit of all its points. If a
fiber $V = \eta^{-1}(z)$ is not the orbit of its points then the generic orbit $Y_{V,A}$ of points of V is a proper subnilmanifold of V, V is partitioned by translates of its connected component, etc.

For the action on X of a polynomial sequence g the picture is similar. A difference is that orbits of distinct points do not partition X; they may contain one another, or have a nontrivial intersection. That is, assuming $g(0) = 1_G$, even if a translate $V = aY_g$ of the generic orbit Y_g for g is the orbit of some point, $V = \text{Orb}_g(x)$, it does not have to be true for all other points of V; however, in this case $V = \text{Orb}_g(y)$ for almost all $y \in V$.

4. Relation between linear and polynomial generic orbits

Let $g: \mathbb{Z}^l \to G$ be a polynomial sequence in G with $g(0) = 1_G$ and let A be the subgroup of G generated by the elements of g. Let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. We will investigate the relation between Y_g and Y_A.

Clearly, $Y_g \subseteq Y_A$.

4.1. Let us first assume that Y_g is connected. Let $x \in X$ be a point of X that has generic orbit under the action of g; let $x = \pi(a)$, $a \in \mathcal{G}^0$, so that $\text{Orb}_g(x) = aY_g$. For any $y \in aY_g$ by Theorem 2.3(a) and Theorem 3.6 we have $\text{Orb}_g(y) \subseteq aY_g$, so $g(n)y \in aY_g$ for all $n \in \mathbb{Z}^l$.

It follows that A preserves $\text{Orb}_g(x)$ and hence, $\text{Orb}_A(x) \subseteq \text{Orb}_g(x)$. Since this is true for almost all points of X, we have $Y_A \subseteq Y_g$.

4.2. We obtain the following result:

Proposition. Let $g: \mathbb{Z}^l \to G$ be a polynomial sequence in G with $g(0) = 1_G$, let A be the subgroup of G generated by the elements of g, let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. If Y_g is connected, then $Y_g = Y_A$.

4.3. The case where Y_g is not connected can be reduced to the previous one. It is proven in [L2] that, given a point $x \in X$, there exists a subgroup ω of finite index in \mathbb{Z}^l such that, for the restriction g_ω of g on ω the orbit $\text{Orb}_{g_\omega}(x)$ is connected. It follows that for some subgroup $\omega \subseteq \mathbb{Z}^l$ of finite index the generic orbit Y_{g_ω} for g_ω is connected. (Indeed, since \mathbb{Z}^l has only countably many subgroups, there exists a subgroup ω of finite index for which the set of x with connected orbits under the action of g_ω has positive measure.) Y_{g_ω} is then a connected component of Y_g.

Let A_ω be the group generated by the elements of g_ω; by Proposition 4.2, the generic orbit for A_ω is Y_{g_ω}. It is easy to see that A_ω has finite index in A, thus Y_{g_ω} coincides with one of the connected components of Y_g. Hence, the connected components of Y_g have the same dimension as components of Y_A, and so, coincide with them. This proves Theorem 1.13.II:

4.4. **Theorem.** Let $g: \mathbb{Z}^l \to G$ be a polynomial sequence in G with $g(0) = 1_G$, let A be the subgroup of G generated by the elements of g, let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. Then Y_g is a union of connected components of Y_A.
4.5. Remark. If \(V \) is a connected subnilmanifold of \(X \), the generic orbit \(Y_{V,g} \) for \(g \) on \(V \) may not be a union of connected components of the generic orbit \(Y_{V,A} \) for \(A \) on \(V \). This can already be seen on the trivial example where \(V \) is a single point.

4.6. Corollary. The connected components of \(Y_g \) are all congruent.

4.7. An open question. I cannot answer the following question: are the connected components of any nongeneric orbit for \(g \) also congruent to each other?

4.8. Let \(L = [G^o, G^o] \setminus X \); we will call \(L \) the maximal factor-torus of \(X \).

Let \(g \) be a polynomial sequence in \(G \). It is proven in [L2] that if \(\text{Orb}_g(u) = L \) for a point \(u \in L \) then \(\text{Orb}_g(x) = X \) for any \(x \in X \).

For “linear” actions on \(X \) a stronger statement holds. Now let \(N = [G, G] \setminus X \). \(N \) is a factor-torus of \(L \), and dealing with \(N \) is easier than with \(L \) since \(G \) acts on the torus \(N \) by conventional, “abelian” shifts, whereas on \(L \) it may act by “sqew-shifts”, that is, by unipotent affine transformations (see Example 1.81 above). Let \(A \) be a subgroup of \(G \);

assuming that \(G \) is generated by \(G^o \) and \(A \), one has \(\text{Orb}_A(x) = X \) for all \(x \in X \) whenever \(\text{Orb}_A(v) = N \) for some \(v \in N \). Example 1.12 shows that an analogous statement does not hold for a polynomial action; we, however, get the following:

4.9. Corollary. Let \(g \) be a polynomial sequence in \(G \) and assume that \(G \) is generated by \(G^o \) and elements of \(g \). Let \(N = [G, G] \setminus X \), and assume that \(\text{Orb}_g(v) = N \) for some \(v \in N \). Then the generic orbit for \(g \) is equal to \(X \).

Proof. We may assume that \(g(0) = 1_G \). Let \(A \) be the group generated by the elements of \(g \). Then \(\text{Orb}_A(v) = N \), so the generic orbit for \(A \) is \(X \), and by Proposition 4.2, \(X \) is the generic orbit for \(g \). ■

5. Orbits of a subnilmanifold

Let \(V \) be a connected subnilmanifold of \(X \); we will assume for simplicity that \(V \ni 1_X \) and so, \(V = \pi(K) \) where \(K \) is a connected closed subgroup of \(G^o \). For a subgroup \(A \) of \(G \) or a polynomial sequence \(g: \mathbb{Z}^l \rightarrow G \) we may now investigate (the closures of) the orbits \(\overline{\text{Orb}}_A(V) = AV \) and \(\overline{\text{Orb}}_g(V) = g(\mathbb{Z}^l)V \) of \(V \) under the action of \(A \) and \(g \) respectively. It is shown in [L3] that \(\overline{\text{Orb}}_A(V) \) is a subnilmanifold and \(\overline{\text{Orb}}_g(V) \) is a FU-subnilmanifold of \(X \); in this section we will study a relation between these orbits of \(V \) and the generic orbits for \(A \) and \(g \) on \(V \).

5.1. We first extend the notion of normality of a subnilmanifold introduced in 3.1. Let \(Y \) be a subnilmanifold of \(X \), \(Y = Hx \) where \(x \in X \) and \(H \) is a closed subgroup of \(G^o \). Let us say that \(Y \) is normal with respect to \(V \) if \(K \) normalizes \(H \).

5.2. Proposition. Let \(H \) be a closed subgroup of \(G^o \) and let \(x \in V \). If the subnilmanifold \(Y = Hx \) of \(X \) is normal with respect to \(V \), then

(i) the sets \(Hx, y \in V \), are all closed;
(ii) the set \(W = HV \) is a subnilmanifold of \(X \) with \(\dim W = \dim V + \dim Y - \dim(V \cap Y) \),
and the sets \(aY, a \in K \), partition \(W \);
(iii) the subnilmanifolds \(aY \cap V, a \in K \), of \(V \) are all congruent and partition \(V \).

Proof. We may assume that \(x = 1_X \) and so, \(Y = \pi(H) \). Since \(K \) normalizes \(H \), the set \(HK = KH \) is a closed subgroup of \(G^\circ \). \(\Gamma \cap K \) is uniform in \(K \) and \(\Gamma \cap H \) is uniform in \(H \), thus \(\Gamma \cap (KH) \) is uniform in \(KH \). Thus, \(W = \pi(HK) = HV \) is a subnilmanifold of \(X \).

\(H \) is a normal subgroup of \(KH \), thus \(Y \) is a normal subnilmanifold of \(W \). Hence, the sets \(H_y, y \in V \), are equal to the sets \(aY, a \in K \), are closed and partition \(W \). \(H \cap K \) is a normal subgroup of \(K \), thus \(Y \cap V \) is a normal subnilmanifold of \(V \), so the sets \(aY \cap V = aY \cap aV = a(Y \cap V) \) partition \(V \). The factor-nilmanifold \(W/Y \) is isomorphic to the factor-nilmanifold \(V/(V \cap Y) \), so \(\dim W = \dim Y + \dim(V/(V \cap Y)) = \dim Y + \dim V - \dim(V \cap Y) \).

5.3. Let us denote the subnilmanifold \(W = HV \), appearing in Proposition 5.2, by \(YA \).

5.4. We now have:

Theorem. Let \(A \) be a subgroup of \(G \). The connected components of the generic orbit \(Y_{V,A} \) of \(A \) on \(V \) are normal with respect to \(V \).

5.5. We need an extension of Lemma 3.3:

Lemma. Let \(H \) and \(K \) be subgroups of \(G^\circ \), let \(\Lambda \) be a uniform subgroup of \(K \) and assume that \(\Lambda \) normalizes \(H \). Then \(K \) normalizes \(H \).

The proof of this lemma is similar to the proof of Lemma 3.3.

5.6. **Proof of Theorem 5.4.** Let \(\Lambda = \Gamma \cap K \), this is a uniform subgroup of \(K \). Let \(P \) be the set, introduced in Theorem 2.2, of points of \(V \) whose orbits under the action of \(A \) are nongeneric on \(V \). Let \(x \in V \setminus P \); we may assume that \(x = 1_X \). Then, by Theorem 2.2, for any \(\lambda \in \Lambda \), \(\text{Orb}_A(1_X) = \text{Orb}_A(\pi(\lambda)) = \lambda Y_{V,A} \). So, \(\lambda Y_{V,A} = Y_{V,A} \) for all \(\lambda \in \Lambda \). Let \(H \) be the closed subgroup of \(G^\circ \) such that \(Y_{V,A} = \pi(H) \) and let \(H^0 \) be the identity component of \(H \). For \(\lambda \in \Lambda \) we have \(\lambda H^0 = H^0 \gamma \), and \(\lambda H^0 = H^0 c^\gamma \) for some \(c \in H \) and \(\gamma \in \Gamma^0 \). So \(\lambda H^0 \gamma^{-1} = H^0 c^\gamma \lambda^{-1} \), and since \(\lambda H^0 \gamma^{-1} \) is a subgroup of \(G^\circ \), \(\lambda H^0 \gamma^{-1} = H^0 \). Hence, \(H^0 \) is normalized by \(\Lambda \); by Lemma 5.5, \(H^0 \) is normalized by \(K \).

5.7. As a corollary, we get

Theorem. Let \(A \) be a subgroup of \(G \) and \(Y \) be a connected component of the generic orbit \(Y_{V,A} \) of \(A \) on \(V \). The connected components of the orbit \(\text{Orb}_A(V) \) of \(V \) under the action of \(A \) are translates of \(YV \).

Proof. If \(Y_{V,A} = Y \) is connected, it is normal with respect to \(V \), thus \(YV \) is defined and is a closed subnilmanifold of \(X \). For every point \(x \in V \), \(x = \pi(a) \) with \(a \in K \), we have \(\text{Orb}_A(x) \subseteq aY \subseteq YV \), thus \(\text{Orb}_A(V) \subseteq YV \). For almost every point \(x \in V \), \(x = \pi(a) \) with \(a \in K \), we have \(\text{Orb}_A(x) = aY \), thus \(\bigcup_{a \in K} \text{Orb}_A(x) \) is dense in \(YV \), and so, \(\text{Orb}_A(V) = YV \).

If \(Y_{V,A} \) is not connected and \(Y \) is its connected component, we can find in \(A \) a subgroup \(B \) of finite index such that \(Y_{V,B} = Y \). Thus, \(\text{Orb}_B(V) = YV \). Now, \(A = \bigcup_{i=1}^s b_i B \) for
some $b_1, \ldots, b_s \in A$, and thus $\overline{\text{Orb}}_A(V) = \bigcup_{i=1}^s b_i Y V$. ■

5.8. Similarly, we have

Theorem. Let g be a polynomials sequence in G. The connected components of the generic orbit $Y_{V,g}$ of g on V are normal with respect to V.

Proof. Let $g : \mathbb{Z}^l \to G$; after passing to a subgroup of finite index in \mathbb{Z}^l we may assume that $Y_{V,g}$ is connected. Next, we may assume that $g(0) = 1_G$. Let P be the set, introduced in Theorem 2.3, of points whose orbits under the action of g are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Let $\Lambda = \Gamma \cap K$, this is a uniform subgroup of K. By Theorem 2.3, for any $\lambda \in \Lambda$, $\overline{\text{Orb}}_g(1_X) = \overline{\text{Orb}}_g(\pi(\lambda)) = \lambda Y_{V,g}$. So, $\lambda Y_{V,g} = Y_{V,g}$ for all $\lambda \in \Lambda$. Let H be the connected closed subgroup of G^o such that $Y_{V,g} = \pi(H)$. Let $\lambda \in \Lambda$, then $\lambda H = H c_\gamma$ for some $\gamma \in \Gamma^o$. So $\gamma H \lambda^{-1} = H \gamma \lambda^{-1}$, and since $\lambda H \lambda^{-1}$ is a subgroup of G^o, $\lambda H \lambda^{-1} = H$. Hence, H is normalized by Λ; by Lemma 5.5, H is normalized by K. ■

5.9. And as a corollary we obtain

Theorem. Let g be a polynomial sequence in G. Every connected component of the orbit $\overline{\text{Orb}}_g(V)$ of V under the action of g is a translate of $Y V$, where Y is a connected component of the generic orbit $Y_{V,g}$ of g on V.

Proof. Again, by passing to a subgroup of finite index in \mathbb{Z}^l the problem is reduced to the case $Y_{V,g} = Y$ is connected. Y is normal with respect to V, thus $Y V$ is a closed sub-nilmanifold of X. For every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\text{Orb}}_g(x) \subseteq a Y \subseteq Y V$, thus $\overline{\text{Orb}}_g(V) \subseteq Y V$. For almost every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\text{Orb}}_g(x) = a Y$, thus $\bigcup_{a \in K} \overline{\text{Orb}}_g(x)$ is dense in $Y V$, and so, $\overline{\text{Orb}}_g(V) = Y V$. ■

Acknowledgment. I thank the anonymous referee for comments and suggestions.

Bibliography

