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Abstract

A mapping ϕ of a group G to a group F is said to be polynomial if it triv-

ializes after several consecutive applications of operators Dh, h ∈ G, defined

by Dhϕ(g) = ϕ(g)−1ϕ(gh). We study polynomial mappings of groups, mainly

to nilpotent groups. In particular, we prove that polynomial mappings to a

nilpotent group form a group with respect to the elementwise multiplication,

and that any polynomial mapping G −→ F to a nilpotent group F splits into

a homomorphism G −→ G′ to a nilpotent group G′ and a polynomial mapping

G′
−→ F . We apply the obtained results to prove the existence of the com-

pact/weak mixing decomposition of a Hilbert space under a unitary polynomial

action of a finitely generated nilpotent group.

0. Introduction

0.1. In contrast with the case of abelian groups, the element-wise product ϕ =

ϕ1ϕ2 of two homomorphisms ϕ1, ϕ2:G −→ F of general groups need not to

be a homomorphism. If F is a nilpotent group, then ϕ is not, however, quite

arbitrary. Consider the following example. Let F be the (nilpotent) group of

upper triangular Z-matrices with unit diagonal. Then for any homomorphism

ϕ:Z −→ F the entries of ϕ(n), n ∈ Z, are polynomials in n. Let us say that

a mapping ϕ:Z −→ F is polynomial if the entries of ϕ(n) are polynomials in

n. Then the set of polynomial mappings Z −→ F is closed with respect to the

element-wise multiplication (ϕ1ϕ2)(n) = ϕ1(n)ϕ2(n). It follows that the product

of finitely many homomorphism Z −→ F is a polynomial mapping.

0.2. We show in this paper that the example in 0.1 illustrates a general phe-
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nomenon. For a mapping ϕ of a group G to a group F and for h ∈ G we define

the operator of “differentiation” Dh by (Dhϕ)(g) = ϕ(g)−1ϕ(gh), g ∈ G. We

say that ϕ:G −→ F is polynomial of degree ≤ d if the successive applica-

tion of d+ 1 operators of differentiation cancels ϕ: for any h1, h1, . . . , hd+1 ∈ G,

Dh1
Dh2

. . . Dhd+1
ϕ ≡ 1F . Under this definition, polynomial mappings of degree 0

are constants and polynomial mappings of degree ≤ 1 are affine homomorphisms.

Polynomial mappings inherit some properties of the conventional polynomials:

the set of polynomial mappings is invariant under translations in both F and

G; given a set S of generators of G, any polynomial mapping of degree ≤ d is

determined by its values on the set S≤d =
{

g1 . . . gk
∣

∣ k ≤ d, g1, . . . , gk ∈ S
}

.

However, the “sum” (that is, the element-wise product) ϕ(g) = ϕ1(g)ϕ2(g) of

two polynomial mappings need not to be polynomial: the simplest example is

provided by the homomorphisms ϕ1(n) = fn1 , ϕ2(n) = fn2 of Z to the free group

F generated by f1, f2. The example in section 3.1 below demonstrates that even

in the case where F is a metabelian (2-step solvable) group, the product of two

homomorphisms may not be polynomial.

0.3. The situation changes if one deals with nilpotent groups: polynomial map-

pings of an arbitrary group to a nilpotent group form a group with respect to

the element-wise multiplication (Theorem 3.2). It seems that nilpotent groups

form a natural scope for polynomial mappings: we prove that, if F is nilpotent,

the composition of polynomial mappings G −→ G1 and G1 −→ F is polynomial

(Proposition 3.22); that a polynomial mapping of an arbitrary group G to a nilpo-

tent group F is decomposable into the composition of an epimorphism G −→ G′

onto a nilpotent groupG′ and a polynomial mappingG′ −→ F (Proposition 3.21);

that the operations of multiplication and arising to powers in a nilpotent group

are polynomial (Corollary 3.7).

0.4. We utilize the obtained results to describe the decomposition of a Hilbert

space into the sum of the compact/weak mixing subspaces under the “polynomial

action” of a finitely generated nilpotent group. If ϕ is a unitary action of a

countable amenable group G on a Hilbert space H, then one has a decomposition

H = Hc(ϕ) ⊕ Hwm(ϕ), where Hc(ϕ) and Hwm(ϕ) are ϕ(G)-invariant subspaces

of H such that the action ϕ of G is compact on Hc(ϕ) and is weakly mixing

on Hwm(ϕ). That is, for any u ∈ Hc(ϕ) the orbit ϕ(G)u =
{

ϕ(g)u
∣

∣ g ∈ G
}

is precompact, and for any u, u′ ∈ Hwm(ϕ) and any ε > 0 the set
{

g ∈ G
∣

∣
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|〈ϕ(g)u, u′〉| > ε
}

has zero density in G (with respect to any Følner sequence in

G) ([D]). Such a decomposition may not exist if ϕ is not a homomorphism of G

to the group U(H) of unitary operators on H but the element-wise product of

two homomorphisms G −→ U(H):

Example. Let H be a Hilbert space with the orthonormal basis {ui, vi, xi, yi}i∈Z

and let T and S be unitary operators on H whose action on the elements of the

basis are defined by

T : ui 7→ yi, vi 7→ xi, xi 7→ vi−1, yi 7→ ui+1

and S : ui 7→ vi, vi 7→ ui+1, xi 7→ yi, yi 7→ xi+1.

Let ϕ(n) = TnSn (that is, ϕ(n)w = Tn(Snw), n ∈ Z, w ∈ H); ϕ is the product of

the homomorphisms n 7→ Tn and n 7→ Sn of Z to the group of unitary operators

on H. We have

ϕ(n) :

{

ui 7→ ui+n, vi 7→ vi, xi 7→ xi, yi 7→ yi+n if n is even,
ui 7→ xi, vi 7→ yi+n, xi 7→ ui+n, yi 7→ vi if n is odd,

and it is easy to see that ϕ is neither compact nor weakly mixing on any vector

from H.

0.5. However, if ϕ1, ϕ2 are homomorphisms of a (finitely generated) amenable

group G to a nilpotent group of unitary operators on H, then ϕ is a unitary

polynomial action of G, that is, a polynomial mapping (see 1.4) of G to U(H).

In this case we have:

Theorem. Let ϕ be a polynomial mapping of a finitely generated amenable

group G to a nilpotent group F of unitary operators on a Hilbert space H. Then

H = Hc(ϕ) ⊕Hwm(ϕ), where Hc(ϕ) and Hwm(ϕ) are ϕ(G)-invariant orthogonal

subspaces, ϕ is compact on Hc(ϕ) and is weakly mixing on Hwm(ϕ).

0.6.Though we are mainly interested in polynomial mappings of nilpotent groups,

many facts brought in this paper have quite general character; therefore, when

possible, we will consider polynomial mappings of general groups. Polynomial

mappings to abelian groups are discussed in [B], Chapter 4.

0.7. In Section 1 we describe some useful properties of polynomial mappings of

general groups. In Section 2 we discuss polynomial mappings to abelian groups.

Section 3 is devoted to polynomial mappings to nilpotent groups. In Section 4
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we prove that “the set of zeroes” ϕ−1(1F ) of a polynomial mapping ϕ of a

countable amenable group G to a torsion-free group F has zero density in G. In

Section 5 we consider weakly mixing/compact properties of polynomial unitary

and polynomial measure preserving actions of finitely generated nilpotent groups.

0.8. Acknowledgment. I thank V. Bergelson for help and encouragement. I

am also thankful to the referee for constructive remarks.

1. Polynomial mappings of groups

1.1. Let ϕ be a mapping of a group G to a group F . For h ∈ G, we define the

h-derivative of ϕ, Dhϕ:G −→ F , by Dhϕ(g) = ϕ(g)−1ϕ(gh).

1.2. Lemma. For a mapping ϕ:G −→ F and for any h, h1, h2 ∈ G, one has

Dh1h2
ϕ(g) = Dh1

ϕ(g)Dh2
ϕ(gh1) = Dh1

ϕ(g)Dh2
ϕ(g)Dh1

Dh2
ϕ(g) and Dh−1ϕ(g)

= Dhϕ(gh
−1)−1.

Proof. Direct computation.

1.3. Lemma. Let ϕ:G −→ F satisfy ϕ(1G) = 1F . Then for any h ∈ G,

Dhϕ(1G) = ϕ(h) and Dhϕ(h
−1) = ϕ(h−1)−1.

Proof. Direct computation.

1.4. Unless stated otherwise, we will assume that G and F are groups and that

S ⊆ G is a generating set for G. Let d be a nonnegative integer; we say that

ϕ is polynomial of degree ≤ d (relative to S) if for any h1, . . . , hd+1 ∈ S,

Dh1
. . . Dhd+1

ϕ ≡ 1F . We will call the minimal d with this property the degree

of ϕ (relative to S): degϕ = d.

Thus, a mapping ϕ:G −→ F is polynomial of degree ≤ d, d ≥ 1, relative to S

if and only if for all h ∈ S, the mappings Dhϕ are polynomial of degrees ≤ d− 1.

1.5. Clearly, if S1, S2 are two generating sets for G with S1 ⊆ S2 and a mapping

ϕ:G −→ F is polynomial of degree ≤ d relative to S2, then ϕ is polynomial of de-

gree ≤ d relative to S1. So, the strongest definition of polynomiality corresponds

to S = G.

When the set S does not matter, we will omit the words “relative to S” and

simply write “ϕ is polynomial”.
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1.6. Let us remark that the requirement that S generates G is not a principal

restriction. Indeed, assume that S ⊆ G generates a subgroup G′ of G. Then G is

partitioned into the union of left cosets of G′, each of which is (affine) isomorphic

to G′. A mapping ϕ:G −→ F is polynomial of degree ≤ d relative to S if and

only if the restriction of ϕ on each of these cosets is polynomial of degree ≤ d

relative to S.

1.7. Proposition. A polynomial mapping of degree zero is constant. A poly-

nomial mapping of degree one is a nonconstant affine homomorphism (that is, a

homomorphism multiplied by a constant).

Proof. Let Dhϕ ≡ 1F for all h ∈ S. Then for any g ∈ G and h ∈ S, ϕ(gh) =

ϕ(g)Dhϕ(g) = ϕ(g) and ϕ(gh−1) = ϕ(g)Dhϕ(g)
−1 = ϕ(g); since S generates G,

this implies ϕ ≡ ϕ(1G).

Now let Dhϕ = const = Dhϕ(1G) for all h ∈ G. Then for any g ∈ G and

h ∈ S, Dhϕ(g) = Dhϕ(1G) = ϕ(1G)
−1ϕ(h), and so,

ϕ(1G)
−1ϕ(gh) =

(

ϕ(1G)
−1ϕ(g)

)(

ϕ(1G)
−1ϕ(h)

)

.

Since S generates G, this implies that ϕ(1G)
−1ϕ is a homomorphism.

It follows that if ϕ is a polynomial mapping of degree ≤ d relative to S, then for

any h1, . . . , hd ∈ S the mapping Dh1
. . . Dhd

ϕ is constant, for some h1, . . . , hd this

constant differs from 1F , and then the mapping Dh1
. . . Dhd−1

ϕ is a nonconstant

affine homomorphism.

1.8. Polynomial mappings Zk −→ Z
l (relative to any generating set S in Z

k) are

ordinary polynomials in k variables (with, possibly, rational coefficients: 1
2n(n−1)

is a polynomial mapping Z −→ Z).

1.9. Polynomial mappings of groups share many properties with conventional

polynomials; we will describe some of these properties in a series of simple propo-

sitions.

1.10. Proposition. If ϕ:G −→ F is polynomial of degree ≤ d and π:F −→ F ′

is a homomorphism, then the composition π ◦ϕ is also polynomial of degree ≤ d.
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1.11. Proposition. Let ϕ:G −→ F be a mapping, let π: G̃ −→ G be a homo-

morphism, and let ϕ̃ = ϕ ◦ π. If ϕ is polynomial of degree d relative to S ⊆ G

and S̃ = π−1(S) generates G̃, then ϕ̃ is polynomial of degree d relative to S̃. If ϕ̃

is polynomial of degree d relative to S̃ ⊆ G̃ and π is onto, then ϕ is polynomial

of degree d relative to S = π(S̃).

Proof. For h̃ ∈ S̃, h = π(h̃) ∈ S and any g̃ ∈ G̃ one has

Dh̃ϕ̃(g̃) = ϕ̃(g̃)−1ϕ̃(g̃h̃) = ϕ
(

π(g̃)
)−1

ϕ
(

π(g̃h̃)
)

= ϕ
(

π(g̃)
)−1

ϕ
(

π(g̃)h
)

= Dhϕ
(

π(g̃)
)

.

Hence, Dh̃ϕ̃ = Dhϕ ◦ π, and the derivatives of ϕ and ϕ̃ trivialize simultaneously.

1.12. Proposition. Let ϕ:G −→ F be a mapping, S be a generating set for G

and d ∈ N. Assume that for any g ∈ G and any h1, . . . , hd ∈ S the restriction

of ϕ onto the group generated by g and h1, . . . , hd is polynomial of degree ≤ d

relative to {h1, . . . , hd}, then ϕ is polynomial of degree ≤ d relative to S.

Proof. For d = 0 the statement is clear. Let h ∈ S. For any g ∈ G and

h1, . . . , hd−1 ∈ S the restriction of ϕ on the subgroup generated by g, h, h1, . . . ,

hd−1 is polynomial of degree ≤ d relative to {h, h1, . . . , hd−1}. Hence, the re-

striction of Dhϕ on the subgroup generated by g, h1, . . . , hd−1 is polynomial of

degree ≤ d− 1 relative to {h1, . . . , hd−1}. By induction on d, Dhϕ is polynomial

of degree ≤ d− 1 relative to S and so, ϕ is polynomial of degree ≤ d relative to

S.

1.13. Proposition. If ϕ:G −→ F is polynomial of degree d relative to S ⊆ G,

then for any g0 ∈ G, f0 ∈ F , the mappings ϕ1(g) = f0ϕ(g), ϕ2(g) = ϕ(g)f0 and

ϕ3(g) = ϕ(g0g) are polynomial of degree d relative to S, and ϕ4(g) = ϕ(gg0) is

polynomial of degree d relative to g0Sg
−1
0 .

Proof. Dhϕ1(g) = ϕ(g)−1f−1
0 f0ϕ(gh) = Dhϕ(g),

Dhϕ2(g) = f−1
0 ϕ(g)−1ϕ(gh)f0 = f−1

0 Dhϕ(g)f0,

Dhϕ3(g) = ϕ(g0g)
−1ϕ(g0gh) = Dhϕ(g0g),

Dhϕ4(g) = ϕ(gg0)
−1ϕ(ghg0) = ϕ(gg0)

−1ϕ(gg0g
−1
0 hg0) = Dg−1

0
hg0
ϕ(gg0).

1.14. Proposition. A mapping ϕ:G −→ F1 × F2, ϕ = (ϕ1, ϕ2), is polynomial

of degree ≤ d if and only if both ϕ1 and ϕ2 are polynomial of degree ≤ d.
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1.15. Proposition. Let S ⊆ G generate G and let ϕ:G −→ F be a polynomial

mapping of degree d relative to S. Then ϕ is uniquely determined by its values

on the set S≤d =
{

g = h1 . . . hl
∣

∣ 0 ≤ l ≤ d, h1, . . . , hl ∈ S
}

. (We assume that

the empty word represents 1G.)

Proof. Assume that we are given ϕ|S≤d . For h ∈ S and g ∈ S≤d−1, Dhϕ(g) =

ϕ(g)−1ϕ(gh) with gh ∈ S≤d and so, by induction on d, Dhϕ is uniquely deter-

mined. Lemma 1.2 shows that Dgϕ is uniquely determined for any g ∈ G, and

ϕ(g) = ϕ(1G)Dgϕ(1G).

1.16. Corollary (of the proof). Let ϕ:G −→ F be a polynomial mapping of

degree d relative to S and let H be a subgroup of F . If ϕ(S≤d) ⊆ H, then

ϕ(G) ⊆ H.

1.17. Corollary. Let ϕ:Z −→ F be a polynomial mapping of degree d relative to

{1} and let H be a subgroup of F . If ϕ(0), ϕ(1), . . . , ϕ(d) ∈ H, then ϕ(Z) ⊆ H.

1.18. Corollary. Let G be generated by a finite set S and let ϕ:G −→ F be a

polynomial mapping relative to S. Then ϕ(G) is contained in a finitely generated

subgroup of F .

Proof. ϕ(G) lies in the subgroup of F generated by ϕ(S≤d).

1.19. Proposition. Let G be the free group generated by a set S and let d ∈ N.

Any mapping η:S≤d −→ F is extendible to a mapping ϕ:G −→ F which is

polynomial of degree ≤ d relative to S. (By Proposition 1.15, such ϕ is unique.)

Proof. For h ∈ S define a mapping ηh:S
≤d−1 −→ F by ηh(g) = η(g)−1η(gh),

g ∈ S≤d−1. By induction on d, for every h ∈ S there is a mapping ϕh:G −→ F

which is polynomial of degree ≤ d − 1 and satisfies ϕh|S≤d−1
= ηh. Define a

mapping ϕ:G −→ F in the following way. Put ϕ(1G) = η(1G). Assume that

ϕ has been already defined on the elements of G representable in the alphabet

S ∪ S−1 by reduced words of length m, m ≥ 0, and let h ∈ S. Then if gh is

a reduced word of length m + 1, we put ϕ(gh) = ϕ(g)ϕh(g), and if gh−1 is a

reduced word of length m+ 1, we put ϕ(gh−1) = ϕ(g)ϕh(gh
−1)−1. It is easy to

see that ϕ|S≤d = η and that for any h ∈ S, Dhϕ = ϕh.

1.20. Corollary. Let G be the free group generated by a set S, let ϕ:G −→ F

be a polynomial mapping of degree ≤ d relative to S and let π: F̃ −→ F be an
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epimorphism. Then there is a mapping ϕ̃:G −→ F̃ which is polynomial of degree

≤ d relative to S and such that π ◦ ϕ̃ = ϕ.

Proof. Define ϕ̃ on S≤d so that π ◦ ϕ̃|S≤d = ϕ|S≤d and extend it to a polynomial

mapping G −→ F̃ of degree ≤ d. Then π ◦ ϕ̃ is a polynomial mapping of degree

≤ d coinciding with ϕ on S≤d. By Proposition 1.15, π ◦ ϕ̃ = ϕ.

1.21. We now pass to the case of a torsion-free F .

Proposition. Let F have no torsion and let ϕ:G −→ F be a nonconstant

polynomial mapping. Then ϕ(G) is infinite.

Proof. If ϕ(G) is finite, then for any h ∈ S, Dhϕ(G) ⊆ ϕ(G)−1ϕ(G) and thus is

also finite. Let degϕ = d; then, for appropriate h1, . . . , hd−1 ∈ S, Dh1
. . . Dhd

ϕ

is a nonconstant affine homomorphism G −→ F with finite range, which is im-

possible since F has no torsion.

1.22. Proposition. Let F have no torsion and let ϕ:Z −→ F be a polynomial

mapping of degree ≤ d relative to N (sic!). Assume that for some m ∈ Z and

n ∈ N, ϕ(m) = ϕ(m+ n) = . . . = ϕ(m+ dn). Then ϕ is constant.

Proof. Assume that ϕ is nonconstant. Put ϕ1 = Dnϕ, ϕ2 = Dnϕ1, . . ., and let

k be the maximal integer for which ϕk is nonconstant. We have k ≤ d − 1 and

ϕk(m) = . . . = ϕk

(

m + (d − k)n
)

= 1F . But ϕk is an affine homomorphism,

ϕk(l) = f0f
l for some f0, f ∈ F . Thus f0f

m = f0f
m+n, which implies fn = 1F .

Since F has no torsion, f = 1F , which leads to contradiction.

1.23. Lemma. Let ϕ:G −→ F be a mapping with ϕ(1G) = 1F , let S ⊆ G be

a generating set for G and let g ∈ G be such that Dhϕ(gg0) = Dhϕ(g0) for all

g0 ∈ G and h ∈ S. Then ϕ(gg0) = ϕ(g)ϕ(g0) for all g0 ∈ G.

Proof. For any h ∈ S we have Dhϕ(g) = Dhϕ(1G) = ϕ(h). Now, assume that

for some g0 ∈ G one has ϕ(g0g) = ϕ(g)ϕ(g0). Then, for any h ∈ S,

ϕ(gg0h) = ϕ(gg0)Dhϕ(gg0) = ϕ(g)ϕ(g0)Dhϕ(g0) = ϕ(g)ϕ(g0h)

and

ϕ(gg0h
−1) = ϕ(gg0)Dh−1ϕ(gg0) = ϕ(g)ϕ(g0)Dhϕ(gg0h

−1)−1

= ϕ(g)ϕ(g0)Dhϕ(g0h
−1)−1 = ϕ(g)ϕ(g0)Dh−1ϕ(g0) = ϕ(g)ϕ(g0h).
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1.24. Proposition. Let F have no torsion, let ϕ:G −→ F be a polynomial

mapping relative to S ⊆ G and let g be an element of G of finite order. Then for

any g1, g2 ∈ G, ϕ(g1gg2) = ϕ(g1g2).

Proof. We may assume that ϕ(1G) = 1F . By induction on the degree of ϕ, for

any h ∈ S and any g2 ∈ G, Dhϕ(gg0) = Dhϕ(g2). By Lemma 1.23, ϕ(gg2) =

ϕ(g)ϕ(g2) for all g2 ∈ G. In particular, ϕ(gn) = ϕ(g)n for all n ∈ N. Since g has

finite order and F has no torsion, ϕ(g) = 1F . So, ϕ(gg2) = ϕ(g2). Applying this

formula to the polynomial mapping ϕ1(g) = ϕ(g1g), g1 ∈ G, we get ϕ(g1gg2) =

ϕ(g1g2).

1.25. One can generalize Proposition 1.24 as follows. Let us say that a subgroup

H of a group F is closed if fn ∈ H with n 6= 0 implies f ∈ H. Clearly, a normal

subgroup H of F is closed if and only if F/H has no torsion. It is also clear that

if a subgroup H of F is closed, then the conjugate subgroups f−1Hf , f ∈ F , are

also closed and thus, the normal subgroup
⋂

f∈F (f
−1Hf) is closed.

1.26. Proposition. Let H be a closed subgroup of F and let ϕ:G −→ F be a

polynomial mapping. Then for any g ∈ G of finite order and any g1, g2 ∈ G,

ϕ(g1gg2) ∈ ϕ(g1g2)H ∩Hϕ(g1g2).

Proof. Replace F by F/
⋂

f∈F (f
−1Hf) and apply Proposition 1.24.

1.27. Question: Is the composition of two polynomial mappings polynomial?

This is true for mappings to nilpotent groups (see Proposition 3.22 below); we

however doubt that this is true in general.

2. Polynomial mappings to abelian groups

The results in this section are preparatory, they will be used and strengthened

in Section 3. We will assume in this section that F is an abelian group written

additively.

2.1. The following is obvious:

Lemma. Polynomial mappings G −→ F of degree ≤ d form a group under

addition.

2.2. Lemma. If ϕ:G −→ F is polynomial of degree d relative to S ⊆ G, then ϕ
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is polynomial of degree d relative to G.

Proof. For any h ∈ S, Dhϕ is polynomial of degree ≤ d − 1 relative to S, and

thus, by induction on d, is polynomial of degree ≤ d− 1 relative to G. It follows

from Lemma 1.2 and Lemma 2.1 that Dhϕ are polynomial of degrees ≤ d − 1

relative to G for all h ∈ G, which implies the result.

2.3. Lemma. For a mapping ϕ:G −→ F and any k ∈ N, h1, . . . , hk, g ∈ G, one

has Dh1
. . . Dhk

ϕ(g) =
∑

A⊆{1,...,k}(−1)k−|A|ϕ
(

g
∏

j∈A hj
)

.

(In the product
∏

j∈A hj elements hj are taken in the natural order: if A =

{j1, . . . , jl} with j1 < . . . < jl, then
∏

j∈A hj = hj1 . . . hjl .)

Proof. Induction on k.

2.4. Lemma. A mapping ϕ:G −→ F is polynomial of degree ≤ d if and only if

∑

A⊆{1,...,d+1}

(−1)d+1−|A|ϕ
(

∏

j∈A

gj
)

= 0 for any g1, . . . , gd+1 ∈ G.

(For d = 2, for example, this is ϕ(g1g2g3)−ϕ(g1g2)−ϕ(g1g3)−ϕ(g2g3)+ϕ(g1)+

ϕ(g2) + ϕ(g3)− ϕ(1G) = 0.)

Proof. By Lemma 2.3, the condition

Dg2 . . . Dgd+1
ϕ(g1) = const = Dg2 . . . Dgd+1

ϕ(1G)

can be rewritten as

∑

A⊆{2,...,d+1}

(−1)d−|A|ϕ
(

g1
∏

j∈A

gj
)

=
∑

A⊆{2,...,d+1}

(−1)d−|A|ϕ
(

∏

j∈A

gj
)

,

which gives the result.

2.5. Let us define, for a set X and l ∈ N, ℘=lX = {A ⊆ X
∣

∣ |A| = l
}

and

℘≤lX = {A ⊆ X
∣

∣ |A| ≤ l
}

.

Lemma. If ϕ:G −→ F is polynomial of degree ≤ d, then for any k ≥ d+1 and

g1, . . . , gk ∈ G,

ϕ
(

k
∏

j=1

gj
)

=
∑

A∈℘≤d{1,...,k}

(−1)d−|A|
(

k−|A|−1
d−|A|

)

ϕ
(

∏

j∈A

gj
)

.
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Proof. Let k ∈ N, let g1, . . . , gk ∈ G and let ϕ be polynomial of degree d ≤ k−1.

By Lemma 2.4, ϕ
(
∏k

j=1 gj
)

=
∑

A∈℘≤k−1{1,...,k}

(−1)k−1−|A|ϕ
(
∏

j∈A gj
)

. By induction

on decreasing d, we then have

ϕ
(

k
∏

j=1

gj
)

=
∑

A∈℘≤d+1{1,...,k}

(−1)d+1−|A|
(

k−|A|−1
d+1−|A|

)

ϕ
(

∏

j∈A

gj
)

=
∑

B∈℘=d+1{1,...,k}

ϕ
(

∏

j∈B

gj
)

+
∑

A∈℘≤d{1,...,k}

(−1)d+1−|A|
(

k−|A|−1
d+1−|A|

)

ϕ
(

∏

j∈A

gj
)

=
∑

B∈℘=d+1{1,...,k}

(

∑

A∈℘≤dB

(−1)d−|A|ϕ
(

∏

j∈A

gj
)

)

+
∑

A∈℘≤d{1,...,k}

(−1)d+1−|A|
(

k−|A|−1
d+1−|A|

)

ϕ
(

∏

j∈A

gj
)

=
∑

A∈℘≤d{1,...,k}

(

(−1)d−|A|
(

k−|A|
d+1−|A|

)

+ (−1)d+1−|A|
(

k−|A|−1
d+1−|A|

)

)

ϕ
(

∏

j∈A

gj
)

=
∑

A∈℘≤d{1,...,k}

(−1)d−|A|
(

k−|A|−1
d−|A|

)

ϕ
(

∏

j∈A

gj
)

2.6. Proposition. Let F and E be abelian groups, let ϕ:G −→ F be polynomial

of degree ≤ d and ψ:F −→ E be polynomial of degree ≤ c. Then the composition

ψ ◦ ϕ is polynomial of degree ≤ dc.

2.7. To avoid cumbersome calculations involved in the direct proof of Proposi-

tion 2.6, we want to establish first a useful criterion of polynomiality. Let us

introduce more notation. Assume that X,Y are sets and α: (X0∪X1∪X2∪ . . .∪

Xd) −→ Y is a mapping. Let k ∈ N and x̄ = (x1, . . . , xk) ∈ Xk. Then we define

a mapping αx̄:℘≤d{1, . . . , k} −→ Y in the following way: for A ∈ ℘≤d{1, . . . , k},

A = {j1, . . . , jr} with j1 < . . . < jr, let α
x̄(A) = α(xj1 , . . . , xjr ).

We will say that a mapping α: (X0∪X1∪X2∪ . . .∪Xd) −→ Y is symmetric

if α(g1, . . . , gr) = α(gσ(1), . . . , gσ(r)) for any r ≤ d, any g1, . . . , gr ∈ G and any

permutation σ of {1, . . . , r}.

2.8. Lemma. A mapping ϕ:G −→ F is polynomial of degree ≤ d if and only

if there is a mapping α: (G0 ∪ . . . ∪Gd) −→ F such that for any k ∈ N and any

ḡ = (g1, . . . , gk) ∈ Gk, ϕ
(

k
∏

j=1

gj
)

=
∑

A∈℘≤d{1,...,k}

αḡ(A). If G is an abelian group, α

is symmetric.

11



Proof. Let α: (G0 ∪ . . . ∪ Gd) −→ F and ϕ:G −→ F satisfy ϕ
(
∏k

j=1 gj
)

=
∑

A∈℘≤d{1,...,k}

αḡ(A) for all k ∈ N and all (g1, . . . , gk) ∈ Gk. Then for any ḡ =

(g1, . . . , gd+1) ∈ Gd+1,

∑

A⊆{1,...,d+1}

(−1)d+1−|A|ϕ
(

∏

j∈A

gj
)

=
∑

A⊆{1,...,d+1}

(−1)d+1−|A|
(

∑

B∈℘≤dA

αḡ(B)
)

=
∑

B∈℘≤d{1,...,d+1}

(

d+1
∑

l=|B|

(

d+1−|B|
l−|B|

)

)

αḡ(B) =
∑

B∈℘≤d{1,...,d+1}

(1− 1)d+1−|B|αḡ(B) = 0.

By Lemma 2.4, ϕ is polynomial of degree ≤ d.

Now let us assume that ϕ:G −→ F is polynomial of degree ≤ d. Define α: (G0∪

. . .∪Gd) −→ F by α(∅) = ϕ(1G), α(g1, . . . , gr) =
∑

A⊆{1,...,r}

(−1)r−|A|ϕ
(
∏

j∈A gj
)

for

1 ≤ r ≤ d, ḡ = (g1, . . . , gr) ∈ Gr. Then for any k ≤ d and ḡ = (g1, . . . , gk) ∈ Gk

we have, using induction on k,

ϕ
(

d
∏

j=1

gj
)

= α(g1, . . . , gk)−
∑

A∈℘≤k−1{1,...,k}

(−1)k−|A|ϕ
(

∏

j∈A

gj
)

= α(g1, . . . , gk)−
∑

A∈℘≤k−1{1,...,k}

(−1)k−|A|
(

∑

B⊆A

αḡ(B)
)

= α(g1, . . . , gk)−
∑

B∈℘≤k−1{1,...,k}

(

k−1
∑

l=|B|

(−1)k−l
(

k−|B|
l−|B|

)

)

αḡ(B) =
∑

B⊆{1,...,k}

αḡ(B).

And for k ≥ d+1 and ḡ = (g1, . . . , gk) ∈ Gk, using Lemma 2.5 and induction on

k we have

ϕ
(

k
∏

j=1

gj
)

=
∑

A∈℘≤k−1{1,...,k}

(−1)k−1−|A|ϕ
(

∏

j∈A

gj
)

=
∑

A∈℘≤k−1{1,...,k}

(−1)k−1−|A|
(

∑

B∈℘≤dA

αḡ(B)
)

=
∑

B∈℘≤d{1,...,k}

(

k−1
∑

l=|B|

(−1)k−1−l
(

k−|B|
l−|B|

)

)

αḡ(B) =
∑

B∈℘≤d{1,...,k}

αḡ(B).

In case of commutative G the symmetry of α follows from its definition.

12



2.9. Now let us note that in 2.8, instead of {1, . . . , k} we can use as a set of

indices any linearly ordered finite set. In case of abelian G, because of symmetry

of α any non-ordered finite set can be used. It follows that for an abelian G we

can reformulate Lemma 2.8 in the following way. For sets X,Y , a symmetric

mapping β: (X0 ∪ . . . ∪ Xd) −→ Y , a set Z and a mapping ξ:Z −→ X let us

define a mapping βξ:℘≤dZ −→ Y by βξ
(

{z1, . . . , zr}
)

= β
(

ξ(z1), . . . , ξ(zr)
)

.

Lemma. Let G be an abelian group (written additively). A mapping ϕ:G −→ F

is polynomial of degree ≤ d if and only if there is a symmetric mapping β: (G0 ∪

. . . ∪ Gd) −→ F such that for any finite set Z and mapping ξ:Z −→ G one has

ϕ
(
∑

z∈Z

ξ(z)
)

=
∑

B∈℘≤dZ

βξ(B).

2.10. Proof of Proposition 2.6. Let G be a group, let F and E be abelian

groups, let ϕ:G −→ F be a polynomial mapping of degree ≤ d and let ψ:F −→ E

be a polynomial mapping of degree ≤ c. Let α: (G0 ∪ . . . ∪ Gd) −→ F be the

mapping defining ϕ as in Lemma 2.8, and let β: (F 0 ∪ . . . ∪ F c) −→ E be the

mapping defining ψ as in Lemma 2.9. Then for any k ∈ N and ḡ = (g1, . . . , gk) ∈

Gk we have

ψ ◦ ϕ
(

k
∏

j=1

gj
)

= ψ
(

∑

A∈℘≤d{1,...,k}

αḡ(A)
)

=
∑

B∈℘≤c℘≤d{1,...,k}

βαḡ

(B)

=
∑

C∈℘≤dc{1,...,k}

(

∑

B∈℘≤c℘≤dC
∪B=C

βαḡ

(B)
)

,

where for a set B we put
⋃

B =
⋃

A∈B A. Now, if we define γ: (G
0∪. . .∪Gdc) −→

F by γ(g1, . . . , gr) =
∑

B∈℘≤c℘≤d{1,...,r}
∪B={1,...,r}

βαḡ

(B), r ≤ dc, ḡ = (g1, . . . , gr) ∈ Gr, we will

have ψ ◦ ϕ
(

k
∏

j=1

gj
)

=
∑

C∈℘≤dc{1,...,k}

γḡ(C) for all k ∈ N and ḡ = (g1, . . . , gk) ∈ Gk. By

Lemma 2.8, ψ ◦ ϕ is polynomial of degree ≤ dc.

2.11. Let Z[G] be the group ring of G; we may extend ϕ to a homomorphism

Z[G] −→ F by linearity. Let J =
{

g−1G

∣

∣ g ∈ G
}

⊆ Z[G]; then, by Lemma 2.4,

ϕ is polynomial of degree ≤ d if and only if it is trivial on Jd+1. In this case ϕ

is also trivial on Jk for all k ≥ d+ 1.
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2.12. Let I be the augmentation ideal in Z[G], that is, the kernel of the augmen-

tation homomorphism α:Z[G] −→ Z (which is defined by α|G ≡ 1).

Lemma. ϕ:G −→ F is polynomial of degree ≤ d if and only if the extension

of ϕ on Z[G] is trivial on Id+1. (This is the definition of polynomiality given in

[B].)

Proof. I is spanned by elements of the form

g1(g − 1G)g2 = (g1 − 1G)(g − 1G)(g2 − 1G) + (g − 1G)(g2 − 1G)

+(g1 − 1G)(g − 1G)− (g − 1G) ∈ J + J2 + J3,

thus I ⊆ J + J2 + J3 and so, Id+1 ⊆ Jd+1 + Jd+2 + . . .+ J3d+3.

2.13. Given h ∈ G, let us define the left h-derivative of ϕ:R −→ F by

DL
hϕ(g) = ϕ(hg)−ϕ(g). We will say that ϕ is left-polynomial of degree ≤ d

if for any h1, . . . , hd+1 ∈ G, DL
h1
. . . DL

hd+1
ϕ ≡ 0.

Corollary. ϕ:G −→ F is left-polynomial of degree ≤ d if and only if ϕ is

(right-)polynomial of degree ≤ d.

2.14. Let G = G(1) ⊃ G(2) ⊃ . . . be the lower central series of G: G(i+1) =

[G,G(i)], i ∈ N, and let I be the augmentation ideal in Z[G].

Lemma. (Cf. [B], section 27.) For any i ∈ N, G(i) − 1G ⊆ Ii.

Proof. Assume by induction that G(i−1) − 1G ⊆ Ii−1. Then for any g ∈ G(i−1)

and g′ ∈ G we have

[g, g′]− 1G = g−1g′−1gg′ − 1G = g−1g′−1(gg′ − g′g)

= g−1g′−1
(

(g − 1G)(g
′ − 1G)− (g′ − 1G)(g − 1G)

)

∈ Ii.

G(i) is generated by elements of the form [g, g′] with g ∈ G(i−1), g
′ ∈ G, and if

g1, g2 ∈ G satisfy g1 − 1G, g2 − 1G ∈ Ii, then

g1g2 − 1G = g1(g2 − 1G) + g1 − 1G ∈ Ii.
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2.15. Proposition. If ϕ:G −→ F is a polynomial mapping of degree ≤ d, then

there is a nilpotent group G′ of class ≤ d such that ϕ splits into the compo-

sition ϕ = ϕ′ ◦ π of an epimorphism π:G −→ G′ and a polynomial mapping

ϕ′:G′ −→ F .

Proof. In the notation of 2.14, ϕ is defined on G/G(d+1), that is, is constant on

cosets of G(d+1) in G. Indeed, the extension of ϕ to Z[G] is trivial on Id+1. But

by Lemma 2.14, G(d+1) − 1G ⊆ Id+1 and so,

ϕ(g0g)− ϕ(g0) = ϕ
(

g0(g − 1G)
)

= 0

for all g ∈ G(d+1), g0 ∈ G.

3. Polynomial mappings to nilpotent groups

3.1. Given a group G and a non-abelian group F , the product of two polynomial

mappings G −→ F does not have to be polynomial. Here is an example: let F

be the group generated by f, f1, f2 satisfying [f1, f2] = 1F , f
−1f1f = f21 f2 and

f−1f2f = f1f2. Then the product of the polynomial mappings ϕ1, ϕ2:Z −→ F ,

ϕ1(n) = f−nf1, ϕ2(n) = fn, is

ϕ(n) = f−nf1f
n = f

a1λ
n
1 +a2λ

n
2

1 f
b1λ

n
1 +b2λ

n
2

2 ,

where λ1, λ2 are the eigenvalues of the matrix

(

2 1
1 1

)

and a1, a2, b1, b2 are some

constants. ϕ maps Z into the abelian group generated by f1 and f2 and, clearly,

is not polynomial. In this example, the group F is metabelian.

3.2. However, when F is nilpotent, the situation improves:

Theorem. If F is nilpotent, polynomial mappings G −→ F form a group.

3.3. To prove Theorem 3.2 we need to introduce the notion of the lc-degree

(the degree, associated with the lower central series) of a polynomial mapping

to a nilpotent group. Let F be nilpotent of class c and let F = F(1) ⊃ F(2) ⊃

. . . ⊃ F(c) ⊃ F(c+1) = {1F } be the lower central series of F : F(i+1) = [F(i), F ],

i = 1, . . . , c. Put Z+ = {0, 1, 2, . . .} and Z∗ = Z+ ∪ {−∞}. A vector d̄ =

(d1, . . . , dc) ∈ Z
c
∗ is said to be superadditive if di ≤ dj for all i < j, and

di + dj ≤ di+j for all i, j with i + j ≤ c (we follow the convention that −∞ < t
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and −∞ + t = −∞ for any t ∈ Z+). Let ϕ:G −→ F be a polynomial mapping

relative to S ⊆ G and let d̄ = (d1, . . . , dc) ∈ Z
c
∗ be a superadditive vector. We

will say that ϕ has lc-degree ≤ d̄ (relative to S), lc-degϕ ≤ d̄, if for each

i = 1, . . . , c one has:

if di = −∞, then ϕ(G) ∈ F(i+1);

if di ≥ 0, then for any h1, . . . , hdi+1 ∈ S, Dh1
. . . Dhdi+1

ϕ(G) ⊆ F(i+1).

It is clear that if lc-degϕ ≤ (d1, . . . , dc), then degϕ ≤ dc, and if degϕ ≤ d, then

lc-degϕ ≤ (d, 2d, . . . , cd).

3.4. We will prove the following strengthening of Theorem 3.2:

Proposition. Let F be nilpotent, let S be a generating set for G and let d̄ ∈ Z
c
∗

be a superadditive vector. Then polynomial mappings G −→ F of lc-degree ≤ d̄

relative to S form a group.

Proof. The proof is analogous to the proof of Theorem 1.12 in [L1]. For d ∈

Z∗ and t ∈ Z+, put d −· t = d − t if d ≥ t and d −· t = −∞ otherwise.

For d̄ = (d1, . . . , dc) ∈ Z
c
∗, put d̄ −· t = (d1 −· t, . . . , dc −· t). Notice that

(d̄ −· t1) −· t2 = d̄ −· (t1 + t2), and that if d̄ is a superadditive vector then for any

t ∈ Z+, d̄ −· t is also superadditive. It is clear that if ϕ is a polynomial mapping

of lc-degree ≤ d̄, then for any h ∈ S, Dhϕ is polynomial of lc-degree ≤ d̄ −· 1.

And conversely, if for any h ∈ S the mapping Dhϕ is polynomial of lc-degree

≤ d̄ = (d1, . . . , dc), then ϕ is polynomial of lc-degree ≤ b̄ = (b1, . . . , bc), where

bi = di + 1 if di ≥ 0 and bi = 0 if di = −∞.

We will show the following:

(a) If ϕ1, ϕ2 are polynomial mappings of lc-degree ≤ d̄ −· t, then ϕ1ϕ2 is poly-

nomial of lc-degree ≤ d̄ −· t;

(b) If ϕ1, ϕ2 are polynomial mappings of lc-degrees ≤ d̄ −· t1 and ≤ d̄ −· t2 respec-

tively, then [ϕ1, ϕ2] = ϕ−1
1 ϕ−1

2 ϕ1ϕ2 is polynomial of lc-degree ≤ d̄ −· (t1 + t2);

(c) If ϕ is a polynomial mapping of lc-degree ≤ d̄ −· t, then ϕ
−1 is polynomial of

lc-degree ≤ d̄ −· t.

We will prove (a), (b) and (c) simultaneously by induction on decreasing t and

t1 + t2.

First of all, if t is large enough (t > dc), then lc-degϕ ≤ d̄ −· t means that

ϕ ≡ 1F , which trivially implies (a) and (c); (b) is trivially satisfied when t1+t2 >

2dc. Now let s ∈ Z+ and assume that (a), (b) and (c) hold for t ≥ s + 1 and

t1 + t2 ≥ s+ 1; we will prove that they hold for t = t1 + t2 = s.
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(a) Let t = s and let ϕ1, ϕ2 be polynomial mappings of lc-degree ≤ d̄ −· t. Then

for any h ∈ S and g ∈ G,

Dh(ϕ1ϕ2)(g) = ϕ2(g)
−1ϕ1(g)

−1ϕ1(gh)ϕ2(gh) = ϕ2(g)
−1Dhϕ1(g)ϕ2(g)Dhϕ2(g)

= Dhϕ1(g)[Dhϕ1(g), ϕ2(g)]Dhϕ2(g).

Dhϕ1(g) and Dhϕ2(g) are polynomial mappings of lc-degree ≤ d̄ −· (t+1). Thus

by our assumption, [Dhϕ1(g), ϕ2(g)] is polynomial of lc-degree ≤ d̄ −· (t+1+t) ≤

d̄ −· (t + 1), and Dh(ϕ1ϕ2) is polynomial of lc-degree ≤ d̄ −· (t + 1). It follows

that ϕ1ϕ2 is polynomial of lc-degree ≤ (b1, . . . , bc) with bi = di − t if di ≥ t. To

prove that lc-deg(ϕ1ϕ2) ≤ d̄ −· t it suffices to check that ϕ1ϕ2(G) ⊆ F(i+1) if

di < t. But this is so since ϕ1(G), ϕ2(G) ⊆ F(i+1) in this case.

(b) Now let t1 + t2 = s, let ϕ1 be a polynomial mapping of lc-degree ≤ d̄ −· t1

and ϕ2 be a polynomial mapping of lc-degree ≤ d̄ −· t2. We use the commutator

identity

[xy, uv] = [x, u][x, v]
[

v, [u, x]
]

[

[x, v]
[

v, [u, x]
]

, [x, u]
][

[x, v]
[

v, [u, x]
]

[x, u], y
]

·[y, v]
[

v, [u, y]
]

[y, u]

to write, for any h ∈ S and g ∈ G,

Dh[ϕ1, ϕ2](g) = [ϕ1(g), ϕ2(g)]
−1[ϕ1(gh), ϕ2(gh)]

= [ϕ1(g), ϕ2(g)]
−1[ϕ1(g)Dhϕ1(g), ϕ2(g)Dhϕ2(g)]

= [ϕ1(g), Dhϕ2(g)]
[

Dhϕ2(g), [ϕ2(g), ϕ1(g)]
]

·
[

[ϕ1(g), Dhϕ2(g)]
[

Dhϕ2(g), [ϕ2(g), ϕ1(g)]
]

, [ϕ1(g), ϕ2(g)]
]

·
[

[ϕ1(g), Dhϕ2(g)]
[

Dhϕ2(g), [ϕ2(g), ϕ1(g)]
]

[ϕ1(g), ϕ2(g)], Dhϕ1(g)
]

·[Dhϕ1(g), Dhϕ2(g)]
[

Dhϕ2(g), [ϕ2(g), Dhϕ1(g)]
]

[Dhϕ1(g), ϕ2(g)].

(3.1)

The mappings Dhϕ1(g) and Dhϕ2(g) are polynomial of lc-degrees ≤ d̄ −· (t1+1)

and ≤ d̄ −· (t2+1) respectively. Thus by our assumption, all commutators on the

right hand part of (3.1) are polynomial mappings of lc-degree ≤ d̄ −· (t1+t2+1) =

d̄ −· (s + 1), and such is their product Dh[ϕ1, ϕ2]. Hence, [ϕ1, ϕ2] is polynomial

of lc-degree ≤ (b1, . . . , bc) with bi = di − (t1 + t2) if di ≥ t1 + t2. It is only to

check that [ϕ1, ϕ2](G) ⊆ F(i+1) if di < t1 + t2. Fix g ∈ G, and let i1, i2 ∈ N be

such that ϕ1(g) ∈ F(i1) \ F(i1+1) and ϕ2(g) ∈ F(i2) \ F(i2+1). Then di1 − t1 ≥ 0

and di2 − t2 ≥ 0, so di1+i2 ≥ di1 + di2 ≥ t1 + t2 > di, and thus i1 + i2 > i. But

then [ϕ1(g), ϕ2(g)] ∈ F(i1+i2) ⊆ F(i+1).
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(c) Let ϕ be a polynomial mapping of lc-degree ≤ d̄ −· t = s. For h ∈ S and

g ∈ G, write

Dh(ϕ
−1)(g) = ϕ(g)ϕ(gh)−1 = ϕ(g)

(

ϕ(g)−1ϕ(gh)
)−1

ϕ(g)−1

= ϕ(g)Dhϕ(g)
−1ϕ(g)−1 = Dhϕ(g)

−1ϕ(g)[ϕ(g), Dhϕ(g)
−1]ϕ(g)−1

= Dhϕ(g)
−1[ϕ(g), Dhϕ(g)

−1]ϕ(g)
[

ϕ(g), [ϕ(g), Dhϕ(g)
−1]

]

ϕ(g)−1

. . .

= Dhϕ(g)
−1[ϕ(g), Dhϕ(g)

−1]
[

ϕ(g), [ϕ(g), Dhϕ(g)
−1]

]

. . .

·
[

ϕ(g), . . . , [ϕ(g), Dhϕ(g)
−1] . . .

]

ϕ(g) · C · ϕ(g)−1,

where C =
[

ϕ(g), . . . , [ϕ(g), Dhϕ(g)
−1] . . .

]

∈ F(c+1) and thus C = 1F . Hence

Dh(ϕ
−1)(g) = Dhϕ(g)

−1[ϕ(g), Dhϕ(g)
−1]

[

ϕ(g), [ϕ(g), Dhϕ(g)
−1]

]

. . .

·
[

ϕ(g), . . . , [ϕ(g), Dhϕ(g)
−1] . . .

]

.
(3.2)

(Dhϕ)
−1 is polynomial of lc-degree ≤ d̄ −· (t+1), and so, by (b), all factors on the

right hand side of (3.2) are polynomial mappings of lc-degree ≤ d̄ −· (t+ 1). By

(a), D(ϕ−1) is polynomial of lc-degree ≤ d̄ −· (t+ 1). Hence, ϕ−1 is polynomial

of lc-degree ≤ (b1, . . . , bc) with bi = di − t if di ≥ t. Since also g−1(G) ⊆ F(i+1)

if di < t, we are done.

3.5. The following proposition shows that, when F is a nilpotent group, the

polynomiality of a mapping ϕ:G −→ F does not depend on the choice of a

generating set in G.

Proposition. Let F be nilpotent of class c and let S ⊆ G be a generating set for

G. If ϕ:G −→ F is polynomial of degree ≤ d relative to S, then ϕ is polynomial

of degree ≤ cd+1−1
c−1 relative to G.

Proof. If ϕ is polynomial of degree ≤ d relative to S then for any h ∈ S, Dhϕ is

polynomial of degree ≤ d − 1 relative to S. By induction on d, Dhϕ is polyno-

mial of degree ≤ dc =
cd−1
c−1 relative to G and so, of lc-degree ≤ (dc, 2dc, . . . , cdc)

relative to G. It follows from Lemma 1.2 and Proposition 3.4 that Dhϕ is poly-

nomial of lc-degree ≤ (dc, 2dc, . . . , cdc) relative to G for any h ∈ G, and so ϕ is

polynomial of degree ≤ cdc + 1 = cd+1−1
c−1 relative to G.

18



3.6. Proposition. A mapping ϕ:G1 × G2 −→ F to a nilpotent group F is

polynomial if and only if there are d1, d2 ∈ N such that for all g2 ∈ G2 the

mapping ψg2 :G1 −→ F , ψg2(g1) = ϕ(g1, g2), is polynomial of degree ≤ d1, and

for all g1 ∈ G1 the mapping τg1 :G2 −→ F , τg1(g2) = ϕ(g1, g2), is polynomial of

degree ≤ d2.

Proof. The “only if” part is clear. Assume that the mappings ψg2 , g2 ∈ G2, are

all polynomial of lc-degrees ≤ d̄1 relative to G1, and the mappings τg1 , g1 ∈ G1,

are all polynomial of lc-degrees ≤ d̄2 relative to G2. Then for any h1 ∈ G1 and

any g2 ∈ G2, the restriction of D(h1,1G2
)ϕ on any set of the form g2 = const

has lc-degree ≤ d̄1 −· 1, and the restriction of D(h1,1G2
)ϕ on any set of the form

g1 = const has lc-degree ≤ d̄2. By induction on (d̄1, d̄2) we may conclude that

D(h1,1G2
)ϕ is polynomial of degree ≤ d̄1 + d̄2 −· 1. Similarly, for any h2 ∈ G2,

D(1G1
,h2)ϕ is polynomial of degree ≤ d̄1 + d̄2 −· 1. Since elements (h1,1G2

),

(1G1
, h2) generate G1 ×G2, ϕ is polynomial of lc-degree ≤ d̄1 + d̄2.

3.7. Corollary. Let G be a nilpotent group. Then the operations of multipli-

cation G × G −→ G, (g1, g2) 7→ g1g2, and of raising to a power G × Z −→ G,

(g, n) 7→ gn, are polynomial mappings.

3.8. Let F be a finitely generated torsion-free nilpotent group. It is well known

that F then possesses a subnormal (and even a central) series {1F } = Ft+1 ⊳

Ft ⊳ . . . ⊳ F1 = F with infinite cyclic factors: Fi/Fi+1 ≃ Z, i = 1, . . . , t (see,

for example, [KM]). Let f1 be a generator of F1 over F2 (that is, f2F2 be

a generator of F1/F2), f2 be a generator of F2 over F3, etc. We will call

{f1, . . . , ft} a basis of F : every element of F is uniquely representable in

the form fa1

1 . . . fat

t with a1, . . . , at ∈ Z. So, we have a coordinate mapping

α:F −→ Z
t, α(fa1

1 . . . fat

t ) = (a1, . . . , at).

3.9. Let F be a finitely generated torsion-free nilpotent group, let {f1, . . . , ft}

be a basis of F and let ϕ:G −→ F be a mapping. We can write ϕ(g) =

f
p1(g)
1 . . . f

pt(g)
t , where p1, . . . , pt are mappings G −→ Z.

Proposition. ϕ is polynomial if and only if all p1, . . . , pt are polynomial map-

pings.

Proof. If p1, . . . , pt are polynomial, then ϕ(g) = f
p1(g)
1 . . . f

pk(g)
k is polynomial

as a product of polynomial mappings. Conversely, let ϕ be polynomial. Then
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the mapping ϕ̃1 : G −→ F1/F2 induced by ϕ is also polynomial. Let f̃1 = f1F2;

then ϕ̃1(g) = f̃
p1(g)
1 . It follows that p1 is polynomial. Hence, the mapping

ϕ1(g) = f
p1(g)
1 is also polynomial, and so ϕ−1

1 ϕ is polynomial and maps G into

F2. Now, we may apply induction on i for which ϕ(G) ⊆ Fi.

3.10. Corollary. Let F be a finitely generated torsion-free nilpotent group and

let ϕ:Z −→ F be a nonconstant polynomial mapping of degree ≤ d. Then for any

f ∈ F , #ϕ−1(f) ≤ d.

Proof. We may assume that f = 1G. Let {f1, . . . , fk} be a basis of F and let

ϕ(n) = f
p1(n)
1 . . . f

pt(n)
t , p1, . . . , pk:Z −→ Z. Then ϕ(n) = 1F if and only if

p1(n) = . . . = pk(n) = 0. Let i be the minimal index for which pi is nonconstant

and let Fi+1 be the subgroup of F generated by fi+1, . . . , fk. Since D1ϕ(n) ≡

f
pi(n+1)−pi(n)
i modFi+1, we have deg pi ≤ d.

3.11. The following is a reformulation of Proposition 3.9.

Proposition. Let F be a finitely generated torsion-free nilpotent group and

α:F −→ Z
t be a coordinate mapping. A mapping ϕ:G −→ F is polynomial if

and only if α ◦ ϕ is polynomial. In particular, α is polynomial.

Let us also note that the inverse mapping α−1:Zt −→ F , (a1, . . . , at) 7→ fa1

1 . . . fat

t ,

is polynomial as a product of polynomial mappings.

3.12. Proposition. Let G and F be finitely generated torsion-free nilpotent

groups, let β:G −→ Z
s and α:F −→ Z

t be their coordinate mappings. Then

a mapping ϕ:G −→ F is polynomial if and only if the mapping ψ:Zs −→ Z
t,

ψ = α ◦ ϕ ◦ β−1, is polynomial.

Proof. By Proposition 3.9, we may ignore α and assume that F = Z
t. Then, if

ψ is polynomial, ϕ = ψ ◦ β is polynomial by Proposition 2.6.

Let us assume that ϕ is polynomial of degree ≤ d relative to G, and let

{g1, . . . , gs} be the basis of G corresponding to β. Fix 1 ≤ j ≤ s and b1, . . . , bj−1,

bj+1, . . . , bs ∈ Z. The restriction of ψ on the line
{

(b1, . . . , bj−1, b, bj+1, . . . , bs)
∣

∣

b ∈ Z
}

,

b 7→ ϕ(gb11 . . . g
bj−1

j−1 g
b
jg

bj+1

j+1 . . . g
bs
s ),

is a polynomial mapping of degree ≤ d. By Proposition 3.6, ψ is polynomial.
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3.13. Propositions 3.7 and 3.12 imply as a corollary the well known fact that, in

a nilpotent group, the operations of multiplication and arising to power, being

written in coordinates, are represented by polynomials:

Corollary. Let G be a finitely generated torsion-free nilpotent group and let

{g1, . . . , gs} be a basis of G. Then there are polynomials P1, . . . , Ps:Z
2s −→ Z

and Q1, . . . , Qs:Z
s+1 −→ Z such that for any a1, . . . , as, b1, . . . , bs, n ∈ Z one has

(ga1

1 . . . gas
s )(gb11 . . . gbss ) = g

P1(a1,...,as,b1,...,bs)
1 . . . gPs(a1,...,as,b1,...,bs)

s and

(ga1

1 . . . gas
s )n = g

Q1(a1,...,as,n)
1 . . . gQs(a1,...,as,n)

s .

3.14. We will need a bound on the degrees of the polynomial mappings pi in 3.9.

Such a bound is easily obtainable when the basis of F is compatible with the

lower central series of F :

Proposition. Let F be a finitely generated torsion-free nilpotent group of class

c and let F = F(1) ⊃ F(2) ⊃ . . . ⊃ F(c) ⊃ F(c+1) be the lower central series

of F . Assume that for all i = 1, . . . , c the (finitely generated abelian) groups

Fi/Fi+1 have no torsion; let {f1, . . . , ft1} ⊆ F(1) be a basis of F(1) over F(2) (that

is, {f1F(2), . . . , ft1F(2)} is a basis of F(1)/F(2)), let {ft1+1, . . . , ft2} ⊆ F(2) be a

basis of F(2) over F(3), and so on. Let ϕ:G −→ F , ϕ(g) = f
p1(g)
1 . . . f

ptc (g)
t , be

a polynomial mapping of degree ≤ d. Then, for any j ≤ tc, if ti−1 + 1 ≤ j ≤ ti,

then deg pj ≤ id.

Proof. Since degϕ ≤ d, lc-degϕ ≤ (d, 2d, . . . , cd). Assume by induction on

i that ϕ(G) ⊆ F(i), that is, ϕ(g) = f
pti−1+1(g)

ti−1+1 . . . f
ptc (g)
tc

. Then the map-

ping ϕ̃i:G −→ Fi/Fi+1 induced by ϕ, ϕ̃i = f
pti−1+1

ti−1+1 . . . f
pti

tc
modF(i+1), has de-

gree ≤ id and so, all the mappings pti−1+1, . . . , pti have degrees ≤ id. Thus

the mappings f
pti−1+1

ti−1+1 , . . . , f
pti

ti
:G −→ F have degrees ≤ id, so they have lc-

degrees ≤ (d, 2d, . . . , cd), and so their product ϕi = f
pti−1−1

ti−1−1 . . . f
pti

ti
has lc-degree

≤ (d, 2d, . . . , cd). Hence, the mapping ϕ−1
i ϕ = f

pti+1

ti+1 . . . f
ptc

tc
, which sends G into

F(i+1), also has lc-degree ≤ (d, 2d, . . . , cd), which gives the step of induction.

3.15. Not all torsion-free nilpotent groups possess lower central series with torsion

-free factors. However, every finitely generated torsion-free nilpotent group is

contained in a finitely generated nilpotent group of the same nilpotency class

which already satisfies this property (see, for example, [KM] §17). This allows

us to generalize Proposition 3.14:

Proposition. Let F be a finitely generated torsion-free nilpotent group of class
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c and let ϕ:G −→ F be a polynomial mapping of degree ≤ d. Then there is a

basis {f1, . . . , ft} of F such that in the representation ϕ(g) = f
p1(g)
1 . . . f

pt(g)
t the

polynomial mappings p1, . . . , pt are all of degrees ≤ dc.

Proof. Let F̃ be a finitely generated nilpotent group of class c containing F

and such that the factors F̃(i)/F̃(i+1), i = 1, . . . , c, of the lower central series

F̃ = F̃(1) ⊃ F̃(2) ⊃ . . . ⊃ F̃(c) ⊃ F̃(c+1) = {1F } have no torsion. Put Fi = F̃(i)∩F ,

i = 1, . . . , c+ 1. Then the factors Fi/Fi+1 have no torsion as well.

Let {f1, . . . , ft1} ⊆ F1 be a basis of F1 over F2, {ft1+1, . . . , ft2} ⊆ F2 be a

basis of F2 over F3, and so on. Then the basis {f1, . . . , ftc} of F satisfies the

requirements of the proposition: for any j with ti−1+1 ≤ j ≤ ti, one has deg pj ≤

id. The proof is the same as in Proposition 3.14, with the only distinction that

one has to consider the lc-degree of the arising polynomial mappings with respect

to the lower central series of F̃ instead of F .

3.16. Given h ∈ G, we define the left h-derivative of ϕ:R −→ F by DL
hϕ(g) =

ϕ(hg)ϕ(g)−1. Let S be a generating set for G; we say that ϕ is left-polynomial

of degree ≤ d (relative to S) if for any h1, . . . , hd+1 ∈ S, DL
h1
. . . DL

hd+1
ϕ ≡ 1F .

Proposition. If F is nilpotent then ϕ:G −→ F is (right-)polynomial if and only

if ϕ is left-polynomial.

Proof. It suffices to check only one implication. Let ϕ be polynomial of degree

≤ d and let F have nilpotency class c; we will show that ϕ is left-polynomial of

degree ≤ dc2.

We may replace G by the free group generated by S. F is a factor of a torsion-

free nilpotent group F̃ ; by Corollary 1.20, we may replace F by F̃ and assume that

F is torsion-free. We have to check that ϕ satisfies DL
h1
. . . DL

h
dc2+1

ϕ(g) = 1G for

all h1, . . . , hdc2+1 ∈ S, g ∈ G. Any such identity involves finitely many elements

and so, we may assume that S is finite. By Corollary 1.18, we may assume that

F is finitely generated.

Using Proposition 3.15, find a basis {f1, . . . , ft} of F such that for ϕ(g) =

f
p1(g)
1 . . . f

pt(g)
t one has deg pi ≤ dc, i = 1, . . . , t. By Corollary 2.13, the polynomial

mappings pi:G −→ Z, i = 1 . . . , t, are also left-polynomial of degree ≤ dc. By

the “left” version of Proposition 3.4, ϕ is left-polynomial of degree ≤ dc2.

3.17. Let F be a finitely generated nilpotent group and let H be a subgroup

of F . Then H is closed in F (see 1.25) if and only if F possesses a subnormal
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(and even a central) series over H, H = Fr+1 ⊳ Fr ⊳ . . . ⊳ F1 = F , with infinite

cyclic factors: Fi/Fi+1 ≃ Z, i = 1, . . . , r (see [BL], Proposition 1.17). Let f1 be a

generator of F1 over F2, f2 be a generator of F2 over F3, etc. Then {f1, . . . , fr}

is a basis of F over H: every element of F is uniquely representable in the

form fa1

1 . . . far
r h with a1, . . . , at ∈ Z and h ∈ H.

3.18. Proposition 3.9 is extendible to the case of a basis over a closed subgroup:

Proposition. Let G be a group, let F be a finitely generated nilpotent group,

let H be a closed subgroup of F , let {f1, . . . , fr} be a basis of F over H, and

let ϕ:G −→ F be a mapping, ϕ(g) = f
p1(g)
1 . . . f

pr(g)
r ψ(g), p1, . . . , pr:G −→ Z

and ψ:G −→ H. Then ϕ is polynomial if and only if all p1, . . . , pr and ψ are

polynomial mappings.

The proof is completely analogous to the proof of Proposition 3.9.

3.19. Corollary. Let F be a finitely generated nilpotent group, let H be a closed

subgroup of F and let ϕ:Z −→ F be a polynomial mapping of degree ≤ d. Then

for any f ∈ F , ϕ(Z) 6⊆ fH implies #ϕ−1(fH) ≤ d.

3.20. Propositions in this section were formulated for polynomial mappings of

general groups to special (nilpotent) groups. However, the structure of the range

of a polynomial mapping puts some restrictions on the structure of the domain

of the mapping:

Proposition. Let F be a solvable group and let ϕ:G −→ F be a polynomial

mapping (relative to a set S generating G). Then ϕ is representable as the

composition ϕ′ ◦ π of a homomorphism π of G onto a solvable group G′ and

a polynomial mapping ϕ′:G′ −→ F .

Proof. Let G(1) = G and G(j) = [G(j−1), G(j−1)], j = 2, 3, . . .. Assume that

ϕ has degree ≤ d and that F has solvability class c. We will show that ϕ is

defined on G/G(d(c+1)). Since the shifts ϕ′(g) = ϕ(g0g) of ϕ are also polynomial

of degree ≤ d, this is enough to prove that ϕ is constant on G(d(c+1)).

We may assume that ϕ(1G) = 1F . By induction on d, for any h ∈ S the

mapping Dhϕ is constant on cosets of the subgroup Gd−1 = G((d−1)(c+1)) in

G. So, for any g ∈ Gd−1 and g0 ∈ G, Dh(gg0) = Dh(g0). By Lemma 1.23,

ϕ(gg0) = ϕ(g)ϕ(g0) for all g ∈ Gd−1 and g0 ∈ G; in particular, ϕ|Gd−1
is a

homomorphism. Since F has solvability class c, ϕ|Gd−1
is trivial on the (c+1)-st
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commutator subgroup of Gd−1, that is, on G
(d(c+1)).

3.21. Proposition. Let F be a nilpotent group and let ϕ:G −→ F be a polyno-

mial mapping (relative to a set S generating G). Then ϕ is representable as the

composition ϕ = π ◦ϕ′ of a homomorphism π of G onto a nilpotent group G′ and

a polynomial mapping ϕ′:G′ −→ F .

Proof. Let G = G(1) ⊃ G(2) ⊃ . . . be the lower central series of G, G(i+1) =

[G,G(i)]. We have to show that for k large enough, ϕ is constant on cosets of

G(k) in G. G is a factor, ϕ: G̃ −→ G, of the free group G̃ generated by S; since

π(G̃(k)) = π(G(k)) for all k ∈ N, we may replace G by G̃. In its turn, F is a

factor of a torsion-free nilpotent group F̃ ; by Corollary 1.20, we may replace F

by F̃ and assume that F is torsion-free.

Let F have nilpotency class c and let the degree of ϕ relative to S be≤ d; we will

show that ϕ is constant on cosets of the subgroup G(cd+1) in G. We have to check

that for any g ∈ G(cd+1) and g0 ∈ G, ϕ(g0g) = ϕ(g0); we may therefore assume

that G is finitely generated (that is, that S is finite). By Corollary 1.18, we may

assume that F is finitely generated as well. It then follows from Proposition 3.15

that the proposition is reducible to the case where F is abelian and ϕ:G −→ F

has degree ≤ cd; this case is covered by Proposition 2.15.

3.22. In conclusion, we can generalize Proposition 2.6:

Proposition. Let G1
ϕ1
−→ G2

ϕ2
−→ . . .

ϕk−1

−→ Gk be a sequence of polynomial

mappings such that Gk is a nilpotent group. Then the composition ϕk−1 ◦ . . . ◦

ϕ2 ◦ ϕ1 is also a polynomial mapping.

Proof. When all G1, . . . , Gk are finitely generated torsion-free nilpotent groups,

the statement follows from Proposition 3.12 and Proposition 2.6. The general case

can be reduced to this special case in the following way. First, Proposition 1.12

allows to reduce the problem to the case where G1 is finitely generated. It

then follows from Corollary 1.18 that G2, . . . , Gk may also be assumed to be

finitely generated. Next, Corollary 1.20 (combined with Propositions 1.10 and

Proposition 1.11) allows to replace G1, . . . , Gk−1 by finitely generated free groups.

Then, Gk is a factor of a finitely generated torsion-free nilpotent group and, again,

Corollary 1.20 allows replace Gk by this group. Then, by Proposition 3.21, Gk−1

may be replaced by some its nilpotent factor. Induction on k finishes the proof.
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3.23. Question: How does the structure of G affect the structure of F? For

example, if ϕ:Z −→ F is a polynomial mapping of degree ≤ d relative to Z and

with ϕ(0) = 1F , what can one say about the group generated by ϕ(Z)?

4. Polynomial mappings of amenable groups

For any conventional nonzero polynomial P :Zk −→ Z
l, the set of zeroes of P has

zero density in Z
k. We will show in this section that an analogous fact holds for

polynomial mappings of any countable amenable group.

4.1. From now on, let G be a countable amenable group. G possesses a (right)

Følner sequence, namely, a sequence Φ1,Φ2, . . . ⊆ G of finite subsets satisfying
|Φkg△Φk|

|Φk|
−→
k→∞

0 for any g ∈ G. We fix a Følner sequence Φ1,Φ2, . . . in G; a set

Q ⊆ G is said to be of zero density in G if |Q∩Φk|
|Φk|

−→
k→∞

0, and of density one

if G \Q is of zero density.

4.2. The following proposition is formulated under some restrictions on the gen-

erating set S; we do not know if it remains true without these restrictions.

Proposition. Let G be a countable amenable group and let S be a generating set

for G satisfying the following property: h ∈ S implies hn ∈ S for all n ∈ N. Let

F be a torsion-free group and let ϕ:G −→ F be a nontrivial mapping polynomial

relative to S. Then the preimage Q = ϕ−1(1F ) has zero density in G.

Proof. We will call a subset of G of the form L(g, h) = {ghl}l∈Z with g, h ∈ G,

a line, and a set I(g, h, l) = {ghl}ll=0 with g, h ∈ G, l ≥ 0, an interval.

We may assume that ϕ is nonconstant. By Proposition 1.24, ϕ is constant on

any finite line, that is, on any line L(g, h) with h having finite order. Thus, there

must exist h ∈ S of infinite order such that ϕ is nonconstant on a line L(g, h);

Dhϕ is then nontrivial for this h. We fix such h ∈ S; by induction on the degree

of ϕ, the set Q′ =
{

g ∈ G
∣

∣ ϕ|L(g,h)
= const

}

⊆
{

g ∈ G
∣

∣ Dhϕ(g) = 1F

}

has

zero density in G.

We will use the following fact:

Szemerédi’s Theorem on arithmetic progressions. ([Sz]) For any r ∈ N

and any ε > 0 there exists N ∈ N such that for any M ≥ N , any set R ⊆

{1, . . . ,M} with |R| ≥ εM contains an r-term arithmetic progression.
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Fix ε > 0. Let degϕ ≤ d; let, by the Szemerédi theorem, N ∈ N be such that

for any M ≥ N any set R ⊆ {1, . . . ,M} with |R| > εM contains a d + 1-term

arithmetic progression. Let k ∈ N be such that, for the k-th term of our Følner

sequence, |Φkh△ Φk| <
2ε
N
|Φk| and |Q′ ∩ Φk| < ε|Φk|.

Represent Φk as a disjoint union Φk =
⋃

β∈B Iβ of maximal intervals Iβ =

I(gβ , h, lβ), that is, such that gβh
−1, gβh

lβ+1 6∈ Φk. Let B1 =
{

β ∈ B
∣

∣ |Iβ | <

N
}

, B2 =
{

β ∈ B \ B1

∣

∣ |Q ∩ Iβ | < ε|Iβ |
}

, B3 = B \ (B1 ∪ B2), and let

Ai =
⋃

β∈Bi
Iβ , i = 1, 2, 3. Φk is then partitioned Φk = A1 ∪A2 ∪A3.

We have, first,

2ε

N
|Φk| > |Φkh△ Φk| ≥ |A1h△A1| ≥

2

N
|A1|,

so |A1| < ε|Φk|. Secondly, |Q ∩ A2| < ε|A2| ≤ ε|Φk|. And finally, let β ∈ B3

and Iβ = I(g, h, l). Then, by the Szemerédi theorem, there are m ∈ Z and

n ∈ N such that ghm, ghm+n, . . . , ghm+dn ∈ Q. By Proposition 1.22, applied

to the line L(g, h) (here we use our restrictions on S), ϕ is constant on L(g, h).

So, Iβ ⊂ L(g, h) ⊆ Q′, which implies A3 ⊆ Q′ and so, |A3 ∩ Φk| < ε|Φk|.

Summarizing, |Q ∩ Φk| ≤ |A1|+ |Q ∩A2|+ |A3| < 3ε|Φk|.

4.3. In the case where F is nilpotent we can generalize Proposition 4.2:

Proposition. Let G be a countable amenable group, let F be a nilpotent group,

let ϕ:G −→ F be a polynomial mapping relative to some S generating G, and let

H be a closed subgroup of F . For f ∈ F , if ϕ(G) 6⊆ fH, then Q = ϕ−1(fH) has

zero density in G.

Proof. We may assume that f = 1F . Like in the proof of Proposition 4.2, there

is h ∈ S of infinite order such that Dhϕ(G) 6⊆ H. By induction on the degree of

ϕ, Q′ = (Dgϕ)
−1(H) has zero density in G.

Fix ε > 0, put a = d+1
ε

, and let k ∈ N be such that |Φkg △ Φk| <
2ε
a
|Φk| and

|Q′ ∩ Φk| < ε|Φk|. Represent Φk as a disjoint union of maximal intervals, Φk =
⋃

β∈B Iβ . Put B1 =
{

β ∈ B
∣

∣ |Iβ | < a
}

, B2 =
{

β ∈ B \ B1

∣

∣ |Q ∩ Iβ | < d + 1
}

,

B3 = B \ (B1 ∪B2), and Ai =
⋃

β∈Bi
Iβ , i = 1, 2, 3. Then, first,

2ε

a
|Φk| > |Φkh△ Φk| ≥ |A1h△A1| ≥

2

a
|A1|,

so |A1| < ε|Φk|. Secondly,

|Q ∩A2| < (d+ 1)
|A2|

a
= ε|A2| ≤ ε|Φk|.
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And finally, for β ∈ B3, by Corollary 3.19 we have ϕ(Iβ) ⊆ H, which implies

Iβ ⊆ Q′. Thus, A3 ⊆ Q′ and so, |A3 ∩ Φk| < ε|Φk|.

4.4. We will need the following technical corollary of Proposition 4.3:

Corollary. Let K be a group, let G be a countable amenable group, let F be a

nilpotent group, let ξ:G ×K −→ F be a polynomial mapping, let H be a closed

subgroup of F and let f ∈ F . If ξ(G × K) 6⊆ fH, then the set Q =
{

g ∈ G
∣

∣

ξ({g} ×K) ⊆ H
}

has zero density in G.

Proof. Let h ∈ K be such that ξ(G × {h}) 6⊆ fH; we may replace K by the

group generated by h and so, assume that G×K is amenable. If Q had nonzero

density in G, then Q×K ⊆ ξ−1(H) would have nonzero density in G×K.

4.5. Question: How many zeroes may a polynomial mapping ϕ:Z −→ F of

degree ≤ d have? May it have more than d zeroes? (The positive answer to this

question would allow to avoid the usage of the Szemerédi theorem in the proof

of Proposition 4.2 and remove the restriction on S from its formulation.)

5. An application: Unitary polynomial actions of amenable groups

5.1. Let G be an amenable group, let ϕ be a mapping of G to the group of unitary

operators on a Hilbert space H. We will say that ϕ is compact on u ∈ H, or

that u is a compact vector for ϕ, if the orbit ϕ(G)u =
{

ϕ(g)u
∣

∣ g ∈ G
}

is

precompact. Let L be a subspace of H. We will say that ϕ is compact on L

if ϕ is compact on all u ∈ L. We will say that ϕ is weakly mixing on L if for

every u ∈ L, u′ ∈ H and every ε > 0, the set
{

g ∈ G
∣

∣ |〈ϕ(g)u, u′〉| > ε
}

has zero

density in G (with respect to a fixed Følner sequence).

If ϕ is a mapping of G to the group of measure preserving transformations

of a probability space (X,B, µ), we say that ϕ is compact on X if the induced

mapping of G to the group of unitary operators on H = L2(X,B, µ) is compact

on H, and that ϕ is weakly mixing on X if the induced mapping is weakly mixing

on the orthogonal complement H⊖ C of the subspace of constants in H.

5.2. We call a polynomial mapping of a group G to a group of transformations

of a (topological, linear, measure, etc.) space X a polynomial action of G

on X. We will consider polynomial unitary actions of a group on a Hilbert

space and polynomial measure preserving actions on a probability space,
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under the assumption that the images of these actions are contained in finitely

generated nilpotent groups of transformations.

5.3. We will need the following “structure theorem” for unitary actions of finitely

generated nilpotent groups:

Theorem. ([L3]) Let F be a finitely generated nilpotent group of unitary opera-

tors on a Hilbert space H. Then there is a decomposition of H, H =
⊕

α∈A Lα,

into a direct sum of pairwise orthogonal subspaces such that elements of F per-

mute these subspaces: for any T ∈ F and α ∈ A, T (Lα) = Lβ, β ∈ A, and for

Hα =
{

T ∈ F
∣

∣ T (Lα) = Lα

}

the following holds:

(a) Hα is closed in G;

(b) Hα contains a closed normal subgroup Eα such that

(i) the action of Eα on Lα is compact, and

(ii) every T ∈ Hα \ Eα is weakly mixing on Lα.

We will call the decomposition above a primitive decomposition of H (relative

to the action of F ).

5.4. Let G be a finitely generated amenable group, let F be a nilpotent group

of unitary operators on a Hilbert space H and let ϕ:G −→ F be a polynomial

mapping with ϕ(1G) = 1F = IdH. By Corollary 1.18, we may assume that F is

finitely generated as well. Let H =
⊕

α∈A Lα be a primitive decomposition of H

relative to the action of F . Fix α ∈ A, let Hα =
{

T ∈ F
∣

∣ T (Lα) = Lα

}

and let

Eα be the maximal subgroup of Hα whose action on Lα is compact.

Theorem. (a) For any β ∈ A \ {α}, ϕ(g)(Lα) ⊥ Lβ for all g ∈ G but a set of

zero density, and if ϕ(G) 6⊆ Hα, then also ϕ(g)(Lα) ⊥ Lα for all g ∈ G but a set

of zero density.

(b) If ϕ(G) ⊆ Hα \ Eα, then ϕ is weakly mixing on Lα.

(c) If ϕ(G) ⊆ Eα, then ϕ is compact on Lα.

Proof. (c) is trivial. Since Hα is closed in F , (a) follows from Proposition 4.3.

We only have to prove (b). Let ϕ(G) ⊆ Hα \ Eα. Consider the mapping ξ:G ×

G −→ F and the mappings ϕh:G −→ F , h ∈ G, defined by ξ(h, g) = ϕh(g) =

ϕ(h)−1Dhϕ(g) = ϕ(h)−1ϕ(g)−1ϕ(gh). There may be two cases:

(i) ξ(G × G) 6⊆ Eα. By Corollary 4.4, ϕh(G) = ξ(h,G) 6⊆ Eα for all h ∈ G \ Q,

where Q is a set of zero density in G. By induction on the degree of ϕ, ϕh and
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so, Dhϕ = ϕ(h)ϕh are weakly mixing on Lα for all h ∈ G \ Q. Hence, for any

u ∈ Lα, any ε > 0 and any h ∈ G \ Q, the set
{

g ∈ G
∣

∣ |〈Dhϕ(g)u, u〉| > ε
}

=
{

g ∈ G
∣

∣ |〈ϕ(gh)u, ϕ(g)u〉| > ε
}

has zero density in G. The result now follows

from the following lemma (it is proven in [F] for the case G = Z, but the proof

is almost verbatim transferable to the case of the general amenable G):

Lemma. ([F], Lemma 4.9) Let g 7→ ug be a mapping of an amenable group G to

a Hilbert space L such that the set

{

h ∈ G
∣

∣

{

g ∈ G
∣

∣ |〈ugh, ug〉| < ε
}

has density one
}

has density one in G. Then for any u′ ∈ L and ε > 0, the set
{

g ∈ G
∣

∣ |〈ug, u
′〉| <

ε
}

has density one in G.

(ii) ξ(G×G) ⊆ Eα. Then for any g, h ∈ G, ϕ(gh) = ϕ(g)ϕ(h) modulo Eα, that

is, ϕ induces a homomorphism ϕ̃:G −→ Hα/Eα. Let G be of solvability class c1,

let Hα be of solvability class c2 and let c = max{c1, c2}; then G is a factor of “the

universal solvable group of class c” G̃/G̃(c+1), where G̃ is the free group with the

same generating set as G, G̃(1) = G̃, and G̃(j+1) = [G̃(j), G̃(j)], j = 1, . . . , c. We

may replace G by this group; then ϕ̃ is extendible to a homomorphism ψ:G −→

Hα. η = ψ−1ϕ maps G into Eα and hence, is compact on Lα. On the other

hand, ψ can not have compact vectors in Lα, since for such a vector u, ϕ(G)u

would be precompact. Hence, ψ is weakly mixing on Lα. It remains to apply the

following lemma:

Lemma. Let ψ, η be mappings of an amenable group G to the group of unitary

operators on a Hilbert space L, let ψ be weakly mixing and η be compact on L.

Then ϕ = ψη is weakly mixing.

Proof. Let u, u′ ∈ L and ε > 0, and let v1, . . . , vk be an ε
2‖u′‖ -net for η(G)u.

Then

{

g ∈ G
∣

∣ |〈ϕ(g)u, u′〉| > ε
}

=
{

g ∈ G
∣

∣ |〈ψ(g)η(g)u, u′〉| > ε
}

⊆
k
⋃

i=1

{

g ∈ G
∣

∣ |〈ψ(g)vi, u
′〉| > ε/2

}

,

which is a union of sets of zero density in G and so, is of zero density itself.
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5.5. Corollary. Let ϕ be a polynomial mapping of a finitely generated amenable

group G to a nilpotent group F of unitary operators on a Hilbert space H. Then

H = Hc(ϕ)⊕Hwm(ϕ) so that Hc(ϕ) and Hwm(ϕ) are ϕ(G)-invariant, ϕ is compact

on Hc(ϕ) and is weakly mixing on Hwm(ϕ).

Proof. In the notation of 5.4, define Ac(ϕ) =
{

α ∈ A
∣

∣ ϕ(G) ⊆ Eα

}

, Awm =

A \Ac, and put Hc(ϕ) =
⊕

α∈Ac(ϕ) Lα and Hwm(ϕ) =
⊕

α∈Awm(ϕ) Lα.

5.6. Corollary. Let G be a finitely generated group and let F be a nilpotent

group of unitary operators on a Hilbert space H. For u ∈ H, the polynomial

mappings G −→ F which are compact on u form a group.

Proof. By Corollary 1.18, we may assume that F is finitely generated. By

Proposition 3.21, we may assume that G is nilpotent and so, amenable. Let

H =
⊕

α∈A Lα be the primitive decomposition of H relative to the action of F ,

and let u =
∑

α∈A uα, uα ∈ Lα, α ∈ A. Put A(u) =
{

α ∈ A
∣

∣ uα 6= 0
}

; then,

for the notation of 5.4, a polynomial mapping ϕ:G −→ F is compact on u if and

only if ϕ(G) ⊆ Eα for all α ∈ A(u).

5.7. Now, let us turn to polynomial measure preserving actions. Let G be a

finitely generated amenable group, let F be a nilpotent group of measure pre-

serving transformations of a probability space (X,B, µ), and let ϕ:G −→ F be

a polynomial mapping. Then ϕ induces a polynomial unitary action of G on the

Hilbert space H = L2(X,B, µ); let H = Hc(ϕ) ⊕ Hwm(ϕ) be the corresponding

decomposition of H. It is clear that Hc(ϕ) ∩ L∞(X) is a ϕ(G)-invariant alge-

bra closed under the operation of taking pointwise maximum of its elements. It

follows that Hwm(ϕ) corresponds to a factor of (X,B, µ, ϕ): there is a proba-

bility space (Y,D, ν) along with a measurable mapping π:X −→ Y satisfying

µ
(

π−1(Q)
)

= ν(Q) for all Q ∈ D, and a polynomial measure preserving action

ψ of G on (Y,D, ν) satisfying ψ(g) ◦ π = π ◦ ϕ(g) for all g ∈ G, such that

Hwm(ϕ) = π∗
(

L2(Y,D, ν)
)

. We have, consequently, the following theorem:

Theorem. Let ϕ be a polynomial mapping of a finitely generated amenable group

G to a nilpotent group of measure preserving transformations of a probability

space (X,B, µ). Then the system (X,B, µ, ϕ) possesses a factor (Y,D, ν, ψ) such

that ψ is compact on Y , and ϕ is compact on u ∈ L2(X,B, µ) if and only if

u ∈ π∗
(

L2(Y,D, ν)
)

.
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5.8. In conclusion, we want to bring an analogue of Theorem 5.4 in the case of

polynomial measure preserving actions. It is based on the following “structure

theorem”:

Theorem. ([L2], Theorem 11.11) Let F be a finitely generated nilpotent group of

measure preserving transformations of a probability space (X,B, µ). Then there

is a nontrivial factor (Z,D, ν, F ) of (X,B, µ, F ) with the following properties.

(Z,D, ν) is representable as a direct product of probability spaces (Z,D, ν) =
∏

α∈A(Zα,Dα, να) so that elements of F permute the spaces Zα: for any T ∈ F

and α ∈ A, T (Zα) = Zβ, β ∈ A. For every α ∈ A, F contains a subgroup Eα

such that

(a) the action of Eα on Lα is compact;

(b) the stabilizer of Zα, Hα =
{

T ∈ F
∣

∣ T (Zα) = Zα

}

, coincides with the

normalizer of Eα in F ;

(c) every T ∈ Hα \ Eα is weakly mixing on Zα.

It is clear that for any α ∈ A the group Eα is closed in G. By [BL] Proposi-

tion 1.16, the groups Hα, α ∈ A, are also closed in G.

5.9. Theorem. Let G be an amenable group, let ϕ be a polynomial mapping of G

to a finitely generated nilpotent group F of measure preserving transformations of

a probability space (X,B, µ) satisfying ϕ(1G) = 1F = IdX , and let (Z,D, ν, F ),

(Z,D, ν) =
∏

α∈A(Zα,Dα, να), be the factor of (X,B, µ, F ) described in Theo-

rem 5.8. Then for any α ∈ A one has:

(a) for any β ∈ A \ {α}, ϕ(g)(Zα) 6= Zβ for all g ∈ G but a set of zero density,

and if ϕ(G) 6⊆ Hα, then also ϕ(g)(Zα) 6= Zα for all g ∈ G but a set of zero

density;

(b) if ϕ(G) ⊆ Hα \ Eα, then ϕ is weakly mixing on Zα;

(c) if ϕ(G) ⊆ Eα, then ϕ is compact on Zα.

Proof. Let us consider the spaces Lα = L2(Zα,Dα, να)⊖C, α ∈ A, as subspaces

of the Hilbert space L2(Z,D, ν). Then the action of F on the space
⊕

α∈A Lα is

as described in Theorem 5.3. Thus, Theorem 5.4 may be applied to this space.

5.10. Question: Do the results in this section remain true for non-finitely gen-

erated groups?
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