Ergodic components of an extension by a nilmanifold

A. Leibman
Department of Mathematics
The Ohio State University
Columbus, OH 43210, USA

April 9, 2008

Abstract

We describe the structure of the ergodic decomposition of an extension of an ergodic system by a nilmanifold.

If G is a compact group and V a subgroup of G, then, under the (left) action of V, G splits into a disjoint union of isomorphic “orbits”: if H is the closure of V in G, then the right cosets Ha, $a \in G$, are minimal closed V-invariant subsets of G, and the action of V on each of these sets is ergodic (with respect to the Haar measure). If X is a compact homogeneous space of a locally compact group G and V is a subgroup of G, then the structure of orbits of the action of V on X may be much more complicated. However, if G is a nilpotent Lie group and X is, respectively, a compact nilmanifold, then the orbit structure on X is almost as simple as in the case of a compact G:

Theorem 1. Let X be a compact nilmanifold and let V be a group of translations of X. Then X is a disjoint union of closed V-invariant (not necessarily isomorphic) subnilmanifolds, on each of which the action of V is minimal and ergodic with respect to the Haar measure.

(See [Le], [L1], and [L2]; this is also a corollary of a general theory of Ratner and Shah on unipotent flows, see [Sh].)

Let us now turn to the “relative” situation. We say that a measure space Y is an extension of Y', and that Y' is a factor of Y, if a measure preserving mapping $p: Y \to Y'$ is fixed. If P and P' are measure preserving actions of a group V on Y and Y' respectively such that $P'_{v} \circ p = p \circ P_{v}$, $v \in V$, we say that P is an extension of P' on Y, and that Y' is a factor of Y under the action P.

Throughout the paper, (Ω, ν) will be a probability measure space, and S will be an ergodic measure preserving action of a group V on Ω. We will assume that V is countable. (This assumption is not crucial for our argument, saves us from measure theoretical troubles: under this assumption, if something is true a.e. for every $v \in V$, then it is true a.e. for
all \(v \in V \) simultaneously.) Let \(G \) be a compact group; we say that an extension \(T \) of \(S \) on the space \(\Omega \times G \) is a group extension if \(T \) is defined by the formula \(T_v(\omega, x) = (S_v(\omega), a_{v,\omega}x) \), \(x \in G \), where \(a_{v,\omega} \in G \), \(\omega \in \Omega \), \(v \in V \), and for every \(v \in V \), the mapping \(\omega \mapsto a_{v,\omega} \) is assumed to be measurable. The family \((a_{v,\omega})_{\omega \in \Omega \atop v \in V}\) of elements of \(G \) defining \(T \) is called a cocycle; we will say that \(T \) is given by the cocycle \((a_{v,\omega})\). If \(H \) is a subgroup of \(G \) and \(a_{v,\omega} \in H \) for all \(v \in V \) and \(\omega \in \Omega \), we will say that \((a_{v,\omega})_{v \in V}\) is an \(H \)-cocycle. Clearly, if \(T \) is given by an \(H \)-cocycle, the sets \(\Omega \times (Hx) \), \(x \in G \), are \(T \)-invariant.

We will call a self-mapping of \(\Omega \times G \) defined by the formula \((\omega, x) \mapsto (\omega, b_{\omega}x) \), \(x \in G \), where \(b_\omega \in G \), \(\omega \in \Omega \), and measurably depend on \(\omega \), a reparametrization of \(\Omega \times G \) over \(\Omega \). When reparametrizing \(\Omega \times G \) we allow ourselves to ignore a null set of \(\Omega \), so that the reparametrization function \(b_\omega \) can be only be defined on a subset \(\Omega' \) of full measure in \(\Omega \), and we substitute \(\Omega \) by \(\Omega' \). After a reparametrization given by \(b_\omega \), the cocycle \((a_{v,\omega})\), defining a group extension \(T \) of \(S \) on \(\Omega \times G \), changes to the cocycle \((b_{S_\omega}a_{v,\omega}b_\omega^{-1}) \) (which is said to be cohomologous to \((a_{v,\omega})\)).

Let \(G \) be a compact metric group and let \(T \) be a group extension of \(S \) on \(\Omega \times G \). Then, in complete analogy with the absolute case, a simple decomposition of \(\Omega \times G \) takes place.

Theorem 2. (See, for example, [Z1].) There exists a closed subgroup \(H \) of \(G \) (called the Mackey group of \(T \)) such that, after a certain reparametrization of \(\Omega \times G \) over \(\Omega \), \(T \) is given by an \(H \)-cocycle and \(T \) is ergodic on the right cosets \(Ha \), \(a \in G \), with respect to \(\nu \times (\mu_Ha) \), where \(\mu_H \) is the left Haar measure on \(H \). Moreover, any \(T \)-ergodic measure on \(\Omega \times G \) whose projection to \(\Omega \) is \(\nu \) has the form \(\nu \times (\mu_Ha) \) for some \(a \in G \).

Now let \(G \) be locally compact group and let \(X \) be a compact homogeneous space of \(G \). The notion of a group extension of \(S \) on \(\Omega \times X \) given by a \(G \)-cocycle is transferred without changes to this case; we will only call it a homogeneous space extension, not a group extension. A reparametrization of \(\Omega \times X \) over \(\Omega \) with the help of a function \(b_\omega \in G^{\Omega} \) is also defined similarly. Our goal is to show that, in the framework of relative actions, compact nilmanifolds, again, behave as well as compact groups:

Theorem 3. Let \(X \) be a compact nilmanifold and let \(T \) be a homogeneous space extension of \(S \) on \(\Omega \times X \). There exists a closed subgroup \(H \) of \(G \) such that, after a certain reparametrization of \(\Omega \times X \) over \(\Omega \), \(T \) is given by an \(H \)-cocycle, and if \(\bigcup_{\theta \in \Theta} X_\theta \) is the partition of \(X \) into the minimal subnilmanifolds with respect to the action of \(H \), then the measures \(\nu \times \mu_{X_\theta} \), \(\theta \in \Theta \), where \(\mu_{X_\theta} \) is the Haar measure on \(X_\theta \), are \(T \)-ergodic, and are the only \(T \)-ergodic measures on \(\Omega \times X \) whose projection to \(\Omega \) is \(\nu \).

We will use the following notation and terminology. If \(a \) is a transformation of a (measure) space \(Y \) and \(f \) is a function on \(Y \), then \(a \) acts on \(f \) from the right by the rule \((fa)(y) = f(ay) \). If a space \(Y' \) is a factor of \(Y \), then any function \(h' \) on \(Y' \) lifts to a function \(h \) on \(Y \); we identify \(h' \) with \(h \), and say that \(h \) comes from \(Y' \) in this case.

If \(Y' \) is a factor of a measure space \(Y \), \(P' \) is an action of a group \(V \) on \(Y' \), and \(P \) is an extension of \(P' \) on \(Y \), we will say that a function \(f \in L^\infty(Y) \) is an eigenfunction of \(P \) over \(Y \) if \(fP_v = \alpha_v f \), where \(\alpha_v \in L^\infty(Y') \), for every \(v \in V \). (Our definition of an eigenfunction over \(Y \) is more restricted than the standard definition of a generalized eigenfunction of \(P \).)
over Y, which assumes that the module spanned by the functions $fT_v, v \in V$, has finite rank over $L^\infty(\Omega)$.

G will stand for a nilpotent Lie group of nilpotency class r, Γ for a cocompact subgroup of G, and X for the compact nilmanifold G/Γ. By μ_X we will denote the Haar measure on X, and will always mean this measure on X if the opposite is not stated.

T will stand for a homogeneous space extension of S on $\Omega \times X$ by a cocycle $(a_{\nu,\omega})_{\nu \in V} \in \Omega \times X$.

If Z is a factor of X under the action of G, then T induces an action of V on $\Omega \times Z$, which is defined by the same cocycle $(a_{\nu,\omega})_{\nu \in V} \in \Omega \times X$. We will identify this action with T and denote it by the same symbol.

A subnilmanifold X' of X is a closed subset of X of the form Kx, where K is a closed subgroup of G and $x \in X$. (Note that the notion of a subnilmanifold depends on the group acting of X; what is a subnilmanifold of X with respect to the action of G may not be a subnilmanifold with respect to the action of, say, the identity component of G.) For a subnilmanifold $X' = Kx$ of X we will denote by $\mu_{X'}$ the Haar measure on X' with respect to the action of K, and will always mean this measure on X' if the opposite is not stated.

Let G^o be identity component of G. If X is connected, then X is a homogeneous space of G^o, $X = G^o/\Gamma \cap G^o$. If X is disconnected, then X is a finite union of connected subnilmanifolds; these subnilmanifolds are all isomorphic, are homogeneous spaces of G^o, and are permuted by elements of G.

We define $G_{(1)} = G^o, G_{(k)} = [G_{(k-1)}, G], k = 2, 3, \ldots, r$, and $X_{(k)} = G_{(k+1)} \setminus X, k = 0, 1, \ldots, r - 1$. When X is connected, we also define $X_2 = [G^o, G^o] \setminus X$; then X_2 is a torus, the maximal factor-torus of X. We will denote by p the canonical projection $\Omega \times X \rightarrow \Omega$.

A base tool in studying orbits in nilmanifolds is a lemma by W. Parry ([P1] and [P2]), that says that a shift-transformation of a compact connected nilmanifold X is ergodic iff it is ergodic on the maximal factor-torus of X. Here is a “relative” analogue of Parry’s lemma; another proof of it can be found in [Z2].

Proposition 4. (Cf. [Z2], Corollary 3.4) Assume that X is connected. If T is ergodic on $\Omega \times X_2$, then T is ergodic on $\Omega \times X$, and any eigenfunction f of T over Ω comes from $\Omega \times X_2$ and is such that $f(\omega, \cdot)$ is a character on X_2, times a constant, for a.e. $\omega \in \Omega$.

Proof. We will assume by induction on r that T is ergodic on $\Omega \times X_{(r-1)}$, and that if g is an eigenfunction of T on $\Omega \times X_{(r-1)}$ over Ω, then g comes from $\Omega \times X_2$ and $g(\omega, \cdot)$ is a character-times-a-constant on X_2 for a.e. $\omega \in \Omega$.

Let $f \in L^\infty(\Omega \times X)$ be an eigenfunction of T over Ω, $fT_v = \alpha_v(\omega)f, \alpha_v : \Omega \rightarrow \mathbb{C}, v \in V$. The action of the group $G_{(r)}$ on $\Omega \times X$ factors through an action of the compact commutative group (the torus) $G_{(r)}/(G_{(r)} \cap \Gamma)$, thus $L^2(\Omega \times X)$ is a direct sum of eigenspaces of $G_{(r)}$. Let f' be a nonzero projection of f to one of these eigenspaces, then $f'c = \lambda_c f'$, $\lambda_c \in \mathbb{C}$, for every $c \in G_{(r)}$. Since the eigenspaces of $G_{(r)}$ are T-invariant and invariant under multiplication by functions from $L^\infty(\Omega)$, we have $f'T_v = \alpha_v(\omega)f', v \in V$.

For every $b \in G$ and $c \in G_{(r)}$, $(f'b)c = f'cb = \lambda_c f'b$, so the function $f'_b = (f'b)/f'$ is $G_{(r)}$ invariant, and thus comes from $\Omega \times X_{(r-1)}$.

Assume, by induction on decreasing k, that for some $k \in \{2, \ldots, r\}$ we have $f'c = \lambda_c f'$, $\lambda_c \in \mathbb{C}^\Omega$, for any $c \in G_{(k)}$. Then $(f'c)(\omega, x) = \lambda_c(\omega)(\omega)f'(\omega, x), \omega \in \Omega, x \in X$, for any
\[c = c(\omega) \in G^\Omega_{(k)}. \] Now, for any \(b \in G_{(k-1)} \) and \(v \in V, \)

\[
(f'bT_v)(\omega, x) = f'(S_v\omega, ba_v\omega x) = f'(S_v\omega, a_v\omega [a_v,\omega, b^{-1}]bx) = (f'T_v)(\omega, [a_v,\omega, b^{-1}]bx) = \alpha_v(\omega)f'(\omega, [a_v,\omega, b^{-1}]bx) = \alpha_v(\omega)\lambda_{c_v, b}(\omega)(f'b)(\omega, x),
\]

where \(c_v, b(\omega) = [a_v,\omega, b^{-1}] \in G_{(k)}, \omega \in \Omega. \) So, for any \(b \in G_{(k-1)} \) and \(v \in V, f'_bT_v = \lambda_{c_v, b}(\omega)f'_b, \) and since \(f'_b \) comes from \(X_{(r-1)}, \) by our first induction assumption, \(f'_b(\omega, \cdot) \) is a character-times-a-constant on \(X_2 \) for a.e. \(\omega \in \Omega. \) Thus, for a.e. \(\omega \in \Omega, \) we have a continuous mapping from \(G_{(k-1)} \) to the set of characters on \(X_2, \) and since this set is discrete and \(G_{(k)} \) is connected, this mapping is constant. (For a.e. \(\omega, \) the considered mapping may not be a priori defined on a null subset of \(G_{(k-1)} \), but since it is locally uniformly continuous, it extends to a continuous mapping on \(G_{(k)} \).) Hence, \(f'_b(\omega, \cdot) = \lambda_b(\omega), \lambda_b \in \mathbb{C}, \) for all \(b \in G_{(k-1)} \) and a.e. \(\omega \in \Omega, \) that is, \(f'b = \lambda_b f' \) with \(\lambda_b \in \mathbb{C}^\Omega, \) for all \(b \in G_{(k-1)} \), which gives us the induction step.

As the result of our induction on \(k \) we obtain that for every \(b \in G_{(1)} = G^o \) there exists a function \(\lambda_b \in \mathbb{C}^\Omega \) such that \(f'b = \lambda_b f'. \) Thus for any \(b_1, b_2 \in G^o \) we have \(f'[b_1, b_2] = f'. \) Hence, \(f' \) is \([G^o, G^o] \)-invariant, and so, comes from \(\Omega \times X_2. \) The equality \(f'b = \lambda_b f', b \in G^o, \) now implies that \(f'(\omega, \cdot) \) is a character-times-a-constant on \(X_2 \) for a.e. \(\omega \in \Omega. \)

It follows that \(f \) also comes from \(\Omega \times X_2. \) In particular, there are no \(T \)-invariant functions on \(\Omega \times X \) since there are no \(T \)-invariant functions on \(\Omega \times X_2, \) so \(T \) is ergodic.

Now assume that for at least two distinct eigenspaces of \(G_{(r)} \) the projections \(f', f'' \) to these eigenspaces are nonzero. Then both \(f'T_v = \alpha_v(\omega)f' \) and \(f''T_v = \alpha_v(\omega)f'' \), \(v \in V, \) and so, \(f'/f'' \) is \(T \)-invariant, which contradicts the ergodicity of \(T. \) Hence, \(f \) belongs to one of the eigenspaces of \(G_{(r)}, \) and so, as this has been proven for \(f', f(\omega, \cdot) \) is a character-times-a-constant on \(X_2 \) for a.e. \(\omega \in \Omega. \)

Remark. In contrast with the absolute case (the case \(\Omega = \{ . \}), \) the stronger statement “\(T \) is ergodic if and it is ergodic on \(\Omega \times ([G, G] \backslash X) \)” (where it is assumed that \(G \) is generated by \(G^o \) and \(\{ T_v, v \in V \} \) is no longer true in the relative case. Here is an example: let \(\Omega = \mathbb{Z}_2, \) let \(X = T^2_{x_1, x_2} \) where \(T = \mathbb{R}/\mathbb{Z}, \) let \(G \) be the group of transformations of \(X \) of the form \((x_1, x_2) \mapsto (x_1 + \alpha, x_2 + \beta), \alpha, \beta \in T, \) \(l \in \mathbb{Z}, \) and let \(V \) be the group generated by the transformation \(T(\omega, x_1, x_2) = (\omega + 1, x_1 + \omega, x_2 + (-1)^\omega x_1) \) of \(\Omega \times X, \) where \(\alpha \) is an irrational element of \(T. \) Then \([G, G] = \{(0, x_2), x_2 \in T\}, \) and \([G, G] \backslash X \simeq T_{x_1}. \) One checks that \(T \) is ergodic on \(\Omega \times ([G, G] \backslash X), \) whereas the function \(f(\omega, x_1, x_2) = \begin{cases} x_2, & \omega = 0 \\ x_2 - x_1, & \omega = 1 \end{cases} \) on \(\Omega \times X \) is \(T \)-invariant. The reason of this effect is clear, it is a “bad parametrization” of \(\Omega \times X; \) after a proper reparametrization, \(T \) acts as a rotation on \(X, \) \(G \) can be reduced to the group of rotations of \(X, \) and then \([G, G] \backslash X = X. \)

Remark. We do not know whether Proposition 4 can be extended to the (more general) class of generalized eigenfunctions of \(T \) over \(\Omega. \)

Let \(X \) be connected. Having Proposition 4, we may deal with the maximal factor-torus \(X_2 \) of \(X \) instead of \(X; \) indeed, if \(T \) is not ergodic on \(\Omega \times X, \) then \(T \) is not ergodic on \(T \times X_2 \) as well. The problem is that \(G, \) if disconnected, may act on \(X_2 \) not only by conventional rotations, but also by affine unipotent transformation. Thus, we will still
have to treat \(X_2 \) as a nilmanifold, not as a conventional torus. Since this does not change our argument, we will not assume that \(X \) is a torus; we will, however, call “characters” on \(X \) those on \(X_2 \).

Note that for any character \(\chi \) on \(X \) and any \(a \in G \), \(\chi a = \lambda \chi' \), where \(\chi' \) is a character on \(X \) and \(\lambda \in \mathbb{C}, |\lambda| = 1 \). On the other hand, if \(\lambda \in \mathbb{C}, |\lambda| = 1 \), and \(\chi \) is a character on \(X \), then, clearly, there exists a translation \(a \) of \(X \) such that \(\chi a = \lambda \chi \).

Rather than Proposition 4, we will actually need the following, more technical fact:

Lemma 5. Let \(X \) be connected. Assume that \(T \) is ergodic on \(X_{(r-1)} \) and that \(f \in L^\infty(\Omega \times X) \) is \(T \)-invariant and is an eigenfunction of \(G_{(r)} \). Then \(f(\omega, \cdot) \) is a character-times-a-constant on \(X \) for a.e. \(\omega \in \Omega \).

Of course, if \(X_2 \) is a factor of \(X_{(r-1)} \), this lemma follows from Proposition 4; otherwise it has to be proven separately, though its proof is very similar to that of Proposition 4.

Proof. Let \(fc = \lambda_c f \), \(\lambda_c \in \mathbb{C}, c \in G_{(r)} \). For every \(b \in G \) and \(c \in G_{(r)} \), \((fb)c = fcb = \lambda_c fb\), so the function \(fb = (fb)/f \) is \(G_{(r)} \) invariant, and thus comes from \(\Omega \times X_{(r-1)} \). Assume, by induction on decreasing \(k \), that for some \(k \in \{2, \ldots, r\} \) we have \(fc = \lambda_c f \), \(\lambda_c \in \mathbb{C}^\Omega \), for any \(c \in G_{(k)} \). Then \((fc)(\omega, x) = \lambda_c(\omega)f(\omega, x)\), \(\omega \in \Omega \), \(x \in X \), for any \(c = c(\omega) \in G_{(k)}^\Omega \). Now, for any \(b \in G_{(k-1)} \) and \(v \in V \),

\[
(fb_T)(\omega, x) = f(S_v \omega, ba_v, \omega x) = f(S_v \omega, a_v, \omega(x, b^{-1}bx)) = (fT_v)(\omega, [a_v, \omega, b^{-1}bx]) = f(\omega, [a_v, \omega, b^{-1}bx]) = \lambda_{c_v}(\omega)f(\omega, bx) = \lambda_{c_v}(\omega)(fb)(\omega, x),
\]

where \(c_v(\omega) = [a_v, \omega, b^{-1}] \in G_{(k)} \), \(\omega \in \Omega \). So, for any \(b \in G_{(k-1)} \) and \(v \in V \), \(fbT_v = \lambda_{c_v}(\omega)fb \), and since \(fb \) comes from \(X_{(r-1)} \) where \(T \) is ergodic, by Proposition 4, \(fb(\omega, \cdot) \) is a character-times-a-constant on \(X \) for a.e. \(\omega \in \Omega \). Thus, for a.e. \(\omega \in \Omega \), we have a continuous mapping from \(G_{(k-1)} \) to the set of characters on \(X \), and since this set is discrete and \(G_{(k-1)} \) is connected, this mapping is constant. Hence, \(fb(\omega, \cdot) = \lambda_b(\omega) \), \(\lambda_b \in \mathbb{C} \), for all \(b \in G_{(k-1)} \) and a.e. \(\omega \in \Omega \), that is, \(fb = \lambda_b f \) with \(\lambda_b \in \mathbb{C}^\Omega \), for all \(b \in G_{(k-1)} \), which gives us the induction step.

As the result of induction on \(k \) we obtain that for every \(b \in G_{(1)} = G^o \) there exists a function \(\lambda_b \in \mathbb{C}^\Omega \) such that \(fb = \lambda_b f \). Hence, \(f(\omega, \cdot) \) is a character-times-a-constant on \(X \) for a.e. \(\omega \in \Omega \).

We will also need the following corollary of Theorem 2.

Lemma 6. Let \(K \) be a compact metric group, let \(Z \) be a homogeneous space of \(K \), and let \(R \) be a homogeneous space extension of \(S \) on \(\Omega \times Z \). If \(R \) is not ergodic, then \(K \) has a proper closed subgroup \(H \) such that, after a reparametrization of \(\Omega \times Z \) over \(\Omega \), \(R \) is given by an \(H \)-cocycle.

Proof. The cocycle defining the action \(R \) defines a group action \(\tilde{R} \) of \(V \) on \(\Omega \times K \), for which \(\tilde{R} \) is a factor. If \(R \) is not ergodic, then \(\tilde{R} \) is not ergodic as well, and the assertion of the lemma follows from Theorem 2.

Proposition 7. Assume that \(T \) is not ergodic on \(\Omega \times X \). Then there exists a proper closed subgroup \(H \) of \(G \) such that, after a certain reparametrization of \(\Omega \times X \) over \(\Omega \), \(T \) is given by an \(H \)-cocycle.
Proof. We will use induction on r, the nilpotency class of X. First, for simplicity, consider the case where X is connected. If T is not ergodic on $\Omega \times X_{(r-1)}$, then we are done by induction on r. Thus, we assume that T is ergodic on $\Omega \times X_{(r-1)}$. Let f be a nonzero measurable T-invariant function on $\Omega \times X$. We replace f by its nonzero projection to one of the eigenspaces of $G_{(r)}$, which is also a T-invariant function. By Lemma 5, $f(\omega, \cdot) = \lambda(\omega)\chi_\omega$, where χ_ω is a character on X and $\lambda(\omega) \in \mathbb{C}$, for a.e. $\omega \in \Omega$. Since S is ergodic, $|\lambda(\omega)| = \text{const}$ on a subset Ω' of Ω of full measure, and we may assume that $|\lambda| \equiv 1$. There are only countably many characters on X, therefore a subset Ω'' of full measure in Ω' is partitioned into the union of sets of positive measure where χ_ω is constant. Since S is ergodic, we can choose a character χ on X and elements $b(\omega), \omega \in \Omega''$, measurably depending on ω, such that for every $\omega \in \Omega'$ one has $\lambda_\omega \chi_\omega = \chi b_\omega$, so that $f(\omega, x) = \lambda(\omega)\chi_\omega(x) = \chi(b_\omega x)$, $x \in X$. After the reparametrization of $\Omega \times X$ defined by the function $\omega \mapsto (\omega, x)$ (and replacing Ω by Ω''), f takes the form $f(\omega, x) = \chi(x)$, $\omega \in \Omega$, $x \in X$. Let H be the stabilizer of χ in G, $H = \{c \in G : \chi c = \chi\}$; then H is a proper closed subgroup of G and the cocycle defining Γ takes values in H.

Now let X be disconnected. G acts on the finite set \mathcal{X} of connected components of X; let \bar{G} be the subgroup (of finite index) of G that acts trivially on \mathcal{X}. Then the action of G on \mathcal{X} factorizes through the action of the finite group G/\bar{G}, and if T is not ergodic on $\Omega \times \mathcal{X}$, we are done by Lemma 6. Thus, we may assume that T is ergodic $\Omega \times \mathcal{X}$.

Let X^0 be a connected component of X; then X, under the action of \bar{G}, is isomorphic to $\{1, \ldots, n\} \times X^0$, where n is the number of components in X. Consider $\Omega \times X = \Omega \times \{1, \ldots, n\} \times X^0$ as $\tilde{\Omega} \times X^0$ where $\tilde{\Omega} = \Omega \times \{1, \ldots, n\}$; by our assumption, T acts ergodically on $\tilde{\Omega}$. Since X^0 is connected and has nilpotency class $\leq r$, we may, as in the first part of the proof, find a subset Ω' of full measure in $\tilde{\Omega}$ and a measurable T-invariant function f on $\tilde{\Omega}' \times X^0 = \tilde{\Omega}' \times X$ such that $f(\omega, i, \cdot) = \lambda(\omega, i)\chi_{\omega, i}$, where $\chi_{\omega, i}$ is a character on X^0 and $\lambda(\omega, i) \in \mathbb{C}$, for all $\omega \in \Omega'$ and all $i \in \{1, \ldots, n\}$. For all $\omega \in \Omega'$ we, therefore, have the (non-ordered) set $C_\omega = \{\chi_{\omega, 1}, \ldots, \chi_{\omega, n}\}$ of characters on X^0 such that $T^i C_\omega = C_{S^i \omega, v}$, $v \in V$, for all $\omega \in \Omega'$, and since only countably many possibilities for C_ω exist, a certain reparametrization of $\Omega \times X$ over Ω (with replacing Ω by Ω'') makes C_ω to be constant, $C_\omega = C = \{\chi_1, \ldots, \chi_n\}$ for all $\omega \in \Omega$. Moreover, since T acts ergodically on $\Omega \times \mathcal{X}$, G acts transitively on C; thus, after some change of coordinates in distinct connected components of X, we may make χ_1, \ldots, χ_n to be all equal to the same character χ. After this, we obtain that $\chi T_v = (\chi_{S^j o} \chi) i, j = j(v, \omega, i)$, for all $v \in V$, $\omega \in \Omega$, and $i \in \{1, \ldots, n\}$, that is, T maps the fibers of χ to fibers. Let us assume, as we may, that G is generated by G^0 and the entries of the cocycle defining T; then G maps the fibers of χ to fibers, and we may factorize X by these fibers. Let Z be the factor; then Z is a finite union of circles, $Z = \{1, \ldots, n\} \times \mathbb{T}$, and G acts by rotations on \mathbb{T}, that is, for any $a \in G$, $a(i, x) = (a_i, x + \alpha_{a, i})$, $x \in \mathbb{T}$, $i \in \{1, \ldots, n\}$, with $\alpha_{a, i} \in \mathbb{T}$ (and ai is defined by $X_{ai} = aX_i$). We obtain that the action of G on Z factorizes through the action of a compact group (the group of rotations of components of Z and of permutations of these components). Since T is not ergodic on $\Omega \times Z$, we are done by Lemma 6.

Lemma 8. If T is ergodic on $\Omega \times X$ (with respect to $\nu \times \mu_X$), then $\nu \times \mu_X$ is the only T-ergodic probability measure whose projection on Ω is ν.

6
Proof. Let $G_1 = G$ and $G_k = [G_{k-1}, G]$ for $k = 2, 3, \ldots, r$, let $X_{r-1} = G_r \setminus X$, and let $\pi_r: X \to X_{r-1}$ be the canonical projection. If T is ergodic on $\Omega \times X$ with respect to $\nu \times \mu_X$, by induction on r, $\nu \times \mu_{X_{r-1}}$ is the only T-ergodic probability measure on $\Omega \times X_{r-1}$ whose projection on Ω is ν. Thus, if τ is a T-ergodic probability measure on $\Omega \times X$ with $p(\tau) = \nu$, then $(\Id_\Omega \times \pi_r)(\tau) = \nu \times \mu_{X_{r-1}}$. $\Omega \times X$ is a group extension of $\Omega \times X_{r-1}$ with the fiber $F_r = G_r / (\Gamma \cap G_r)$, which is a compact commutative Lie group. Hence, by Theorem 2, $\tau = \nu \times \mu_{X_{r-1}} \times \mu_{F_r} = \nu \times \mu_X$. □

Proof of Theorem 3. Let H be a minimal closed subgroup of G such that there exists a reparametrization of $X \times \Omega$ over Ω after which T is given by an H-cocycle. (Such a subgroup exists since any chain of decreasing subgroups of G is finite.) Let $X = \bigcup_{\theta \in \Theta} X_\theta$ be the partition of X into the union of subnilmanifolds minimal under the action of H, as in Theorem 1. After the reparametrization corresponding to H, $\Omega \times X$ splits into the disjoint union $\bigcup_{\theta \in \Theta} \Omega \times X_\theta$ of T-invariant subsets on each of which T is given by an H-cocycle. If T is not ergodic on one of these subsets, then by Proposition 7, H contains a proper closed subgroup H' such that, after a reparametrization of $\Omega \times X$ over Ω, T is given by an H'-cocycle; this contradicts the choice of H. Thus, T is ergodic on each of $\Omega \times X_\theta$, $\theta \in \Theta$. Moreover, if τ is an ergodic measure on $\Omega \times X$ with $p(\tau) = \nu$, then τ must be supported by $\Omega \times X_\theta$ for some $\theta \in \Theta$, and thus $\tau = \nu \times \mu_{\Omega_\theta}$ by Lemma 8. □

Bibliography

