Multiple polynomial correlation sequences and nilsequences

A. Leibman
Department of Mathematics
The Ohio State University
Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

February 1, 2010

Abstract

A basic nilsequence is a sequence of the form $\psi(n) = f(T^n x)$, where x is a point of a compact nilmanifold X, T is a translation on X, and $f \in C(X)$; a nilsequence is a uniform limit of basic nilsequences. Let $X = G/\Gamma$ be a compact nilmanifold, Y be a subnilmanifold of X, $g(n)$ be a polynomial sequence in G, and $f \in C(X)$; we show that the sequence $\int g(n)Y f$, $n \in \mathbb{Z}$, is the sum of a basic nilsequence and a sequence that converges to 0 in uniform density. This implies that, given an ergodic invertible measure preserving system (W, B, μ, T), with $\mu(W) < \infty$, polynomials $p_1, \ldots, p_k \in \mathbb{Z}[n]$, and sets $A_1, \ldots, A_k \in B$, the sequence $\mu(T^{p_1(n)}A_1 \cap \ldots \cap T^{p_k(n)}A_k)$ is the sum of a nilsequence and a sequence that converges to 0 in uniform density. We also get a version of this result for the case where p_i are polynomials in several variables.

0. Introduction

A $(d$-step) nilmanifold is a compact homogeneous space of a $(d$-step) nilpotent Lie group; one can show that any d-step nilmanifold has the form G/Γ, where G is a d-step nilpotent (not necessarily connected) Lie group and Γ is a discrete co-compact subgroup of G. Elements of G act on X by translations; a $(d$-step) nilsystem is a $(d$-step) nilmanifold $X = G/\Gamma$ with a translation $a \in G$ on it. Nilsystems play an important role in studying “non-conventional”, or “multiple”, ergodic averages $\frac{1}{N} \sum_{n=1}^{N} T^{p_1(n)}h_1 \cdots T^{p_k(n)}h_k$, where T is a transformation of a finite measure space (W, μ), $p_1, \ldots, p_k \in \mathbb{Z}[n]$, and $h_1, \ldots, h_k \in L^\infty(W)$. (See [HK1], [Z], [HK2].)

Let $X = G/\Gamma$ be a nilmanifold and Y be a subnilmanifold of X. Let g be a polynomial sequence in G, that is, a sequences of the form $g(n) = a_1^{p_1(n)} \cdots a_r^{p_r(n)}$, where $a_1, \ldots, a_r \in G$ and p_1, \ldots, p_r are polynomials taking on integer values on the integers. It is shown in [L1] that the closure of the sequence $g(n)Y$, $X' = \bigcup_{n \in \mathbb{Z}} g(n)Y$, is a disjoint finite union of sub-nilmanifolds of X, and, if X' is a single sub-nilmanifold, the sequence $g(n)Y$ is well distributed in X'. (That is, for every $f \in C(X')$,

Supported by NSF grants DMS-0600042.
\[
\frac{1}{N_2 - N_1} \sum_{n=N_1+1}^{N_2} \int_{g(n)Y} f \, d\mu_Y \xrightarrow{N_2-N_1 \to \infty} \int_X f \, d\mu_Y', \text{ where } \mu_Y \text{ and } \mu_Y' \text{ are the normalized Haar measures on } Y \text{ and on } X' \text{ respectively.}
\]

We were inspired by the following example. Let \(X \) be the 2-dimensional torus \(\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2 \) and \(G \) be the group generated by the ordinary rotations of \(X \) and by the transformation \(a(x, y) = (x, y+x) \); then \(G \) is a nilpotent Lie group acting on \(X \) transitively, which turns \(X \) to a nilmanifold. Choose an irrational \(\alpha \in \mathbb{T} \) and put \(b(x, y) = (x + \alpha, y+x) \), then \(b \in G \). Let \(Y_1 = \{(0, t), \ t \in \mathbb{T}\} \) and \(Y_2 = \{(t, 0), \ t \in \mathbb{T}\} \). Then \(b^nY_1 = \{(n\alpha, t), \ t \in \mathbb{T}\} \) and \(b^nY_2 = \{(t + na, nt + \frac{n(n-1)}{2}\alpha), \ t \in \mathbb{T}\}, \ n \in \mathbb{Z} \). Both sequences \(b^nY_1 \) and \(b^nY_2 \), \(n \in \mathbb{Z} \), are dense in \(X \), but their behaviors are different: the sequence \(b^nY_1 \) consists of congruent subtori that simply “rotate” along \(X \), whereas the members of the sequence \(b^nY_2 \), \(n \in \mathbb{Z} \), become more and more dense in \(X \). We can say that the sequence \(b^nY_1 \) converges to \(X \): \(\int_{g(n)Y_1} f \, d\mu_Y \to \int_X f \, d\mu_X \) for any \(f \in C(X) \), whereas the sequence \(b^nY_2 \) converges to \(X \) only in average: \(\frac{1}{N_2 - N_1} \sum_{n=N_1+1}^{N_2} \int_{g(n)Y_1} f \, d\mu_Y \to \int_X f \, d\mu_X \) for any \(f \in C(X) \). It is clear what difference between \(Y_1 \) and \(Y_2 \) causes this effect: \(Y_1 \) is a normal subgroup of \(G \) whereas \(Y_2 \) is not.

Our goal was to show that in the general situation the sequence \(g(n)Y \) has a “mixed” behavior: \(g(n)Y \) converges to a subnilmanifold \(Z \) (the normal closure of \(Y \)), which, in its turn, rotates along \(X \). We, however, have been unable to prove this, and only prove the weaker fact that \(g(n)Y \) converges to \(Z \) “in uniform density” (see Proposition 2.1). Our proof essentially uses a result from a recent paper by Green and Tao ([GT]) about the “uniform distribution” of subnilmanifolds (see Appendix).

In the terminology introduced in [BHK], a basic \(d \)-step nilsequence is a sequence of the form \(\psi(n) = h(R^nw) \), where \(w \) is a point of a \(d \)-step nilmanifold \(M \), \(R \) is a translation on \(M \), and \(h \in C(M) \); a \(d \)-step nilsequence is a uniform limit of basic \(d \)-step nilsequences. The algebra of nilsequences is a natural generalization of Weyl’s algebra of almost periodic sequences, which are just 1-step nilsequences. We obtain, as a corollary, that for any \(f \in C(X) \) the sequence \(\int_{g(n)Y} f \, d\mu_{g(n)}Y \) is a sum of a basic nilsequence and a sequence that tends to 0 in uniform density (Theorem 2.5 below). We apply this fact to show that for any ergodic invertible measure preserving system \((W, \mathcal{B}, \mu, T)\) with \(\mu(W) < \infty \), polynomials \(p_1, \ldots, p_k \in \mathbb{Z}[n] \), and sets \(A_1, \ldots, A_k \in \mathcal{B} \), the “multiple polynomial correlation sequence” \(\varphi(n) = \mu(T_1^{p_1(n)}A_1 \cap \ldots \cap T_k^{p_k(n)}A_k), n \in \mathbb{Z} \), is a sum of a nilsequence and a sequence that tends to 0 in uniform density (Theorem 3.1 below). (A special case of this theorem, when \(p_i(n) = in, \ i = 1, \ldots, k \), was established in [BHK].) The question whether this is true for non-ergodic systems remains open to us. We also formulate and sketch the proof of a “multiparameter” version of this result: when \(p_1, \ldots, p_k \) are polynomials of \(m \) integer variables, then the sequence \(\varphi(n) = \mu(T_1^{p_1(n)}A_1 \cap \ldots \cap T_k^{p_k(n)}A_k), n \in \mathbb{Z}^m \), is a sum of an \((m-) \) nilsequence and a sequence that tends to 0 in (ordinary) density (Theorem 4.3).

1. Nilmanifolds and sub-nilmanifolds

We will now give necessary definitions and list some facts that we will need below; details and proofs can be found in [M], [L1], [L2], [L4], and [L5]. Throughout the paper, let
$X = G/\Gamma$ be a compact nilmanifold, where G is a nilpotent Lie group and Γ is a discrete subgroup of G, and let $\pi : G \rightarrow X$ be the natural projection. By 1_X we will denote the point $\pi(1_G)$ of X.

By G^o we will denote the identity component of G. We will assume that the group G/G^o is finitely generated (which is enough for our goals).

Note that if G is disconnected, X can be interpreted as a nilmanifold, $X = G'/\Gamma'$, in different ways; for example, if X is connected, $X = G^o/(\Gamma \cap G^o)$. If X is connected and we study the action on X of a sequence $g(n)$ in G, we may always assume that G is generated by G^o and the elements of G.

Every nilpotent Lie group G is a factor of a simply-connected (not necessarily connected) torsion free nilpotent Lie group. (As such, a suitable “free nilpotent Lie group” F can be taken. If G^o has l_1 generators, G/G^o has l_2 generators, and G is d-step nilpotent, then $F = F/F_{d+1}$, where F is the free product of l_1 copies of \mathbb{R} and l_2 copies of \mathbb{Z}, and F_{d+1} is the $(d+1)$st term of the lower central series of F.) Thus, we may and will assume that G is simply connected and torsion-free. The identity component G^o of G is then an exponential Lie group, which means that for every element $a \in G^o$ there exists a (unique) one-parametric subgroup a^t such that $a^1 = a$.

A Malcev basis of G is a finite set $\{e_1, \ldots, e_k\}$ of elements of Γ, with $e_1, \ldots, e_{k_1} \in G^o$ and $e_{k_1+1}, \ldots, e_k \notin G^o$, that generates Γ and is such that every element $a \in G$ can be uniquely written in the form $a = e_1^{u_1} \ldots e_k^{u_k}$ with $u_1, \ldots, u_k \in \mathbb{R}$ and $u_{k_1+1}, \ldots, u_k \in \mathbb{Z}$; we call u_1, \ldots, u_k the coordinates of a. Thus, Malcev coordinates define a homeomorphism $G \cong \mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}$, $a \leftrightarrow (u_1, \ldots, u_k)$, and we may identify G with $\mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}$.

If L is a connected closed normal subgroup of G of dimension l such that the lattice $L \cap \Gamma$ is co-compact in L, the Malcev coordinates on G can be chosen so that $e_1, \ldots, e_l \in L \cap \Gamma; \}$ then $e_1^{u_1} \ldots e_k^{u_k} \in L$ iff $u_{l+1}, \ldots, u_k = 0$, and L is identified with the subspace $\mathbb{R}^l \times \{0\}^{k-l} \subseteq \mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}$. We will call such coordinates on G compatible with L.

Let X be connected. Then, under the identification $G^o \leftrightarrow \mathbb{R}^{k_1}$, the cube $[0,1)^{k_1}$ is the fundamental domain of X. We will call the closed cube $Q = [0,1]^{k_1}$ the fundamental cube of X in G^o and identify X with Q. When X is identified with its fundamental cube Q, the normalized Haar measure μ_X on X coincides with the standard Lebesgue measure μ_Q on Q.

In Malcev coordinates, multiplication in G is a polynomial operation: there are polynomials q_1, \ldots, q_k in $2k$ variables with rational coefficients such that for $a = e_1^{u_1} \ldots e_k^{u_k}$ and $b = e_1^{v_1} \ldots e_k^{v_k}$ we have $ab = e_1^{q_1(u_1, v_1, \ldots, u_k, v_k)} \ldots e_k^{q_k(u_1, v_1, \ldots, u_k, v_k)}$. This implies that “life is polynomial” in nilpotent Lie groups: homomorphisms are polynomial mappings, connected closed subgroups are images of polynomial mappings and are defined by systems of polynomial equations.

A subnilmanifold Y of X is a closed subset of the form $Y = Hx$, where H is a closed subgroup of G and $x \in X$. For a closed subgroup H of G, the set $\pi(H) = H1_X$ is closed, and so is a subnilmanifold, iff the subgroup $\Gamma \cap H$ is co-compact in H; we will call the subgroup H with this property rational.

If Y is a subnilmanifold of X such that $1_X \in Y$, then $H = \pi^{-1}(Y)$ is a closed subgroup of G, and $Y = \pi(H) = H1_X$. H, however, does not have to be the minimal subgroup with this property: if Y is connected, then the identity component H^o of H also satisfies
\[Y = \pi(H^o). \]

Given a subnilmanifold \(Y \) of \(X \), by \(\mu_Y \) we will denote the normalized Haar measure on \(Y \); we have \(\mu_Y = \mu_a Y \) for all \(a \in G \).

Let \(Z \) be a subnilmanifold of \(X \), \(Z = Lx \), where \(L \) is a closed subgroup of \(G \). We say that \(Z \) is normal if \(L \) is normal. In this case the nilmanifold \(\tilde{X} = X/Z = G/(LG) \) is defined, and \(X \) splits into a disjoint union of fibers of the projection mapping \(X \to \tilde{X} \). (Note that if \(L \) is normal in \(G^o \) only, then the factor \(X/Z = G^o/(LG) \) is also defined, but the elements of \(G \setminus G^o \) do not act on it.)

One can show that a subgroup \(L \) is normal iff \(\gamma L \gamma^{-1} = L \) for all \(\gamma \in \Gamma \); hence, \(Z = \pi(L) \) is normal iff \(\gamma Z = Z \) for all \(\gamma \in \Gamma \).

If \(H \) is a closed rational subgroup of \(G \) then its normal closure \(L \) (the minimal normal subgroup of \(G \) containing \(H \)) is also closed and rational, thus \(Z = \pi(L) \) is a subnilmanifold of \(X \). We will call \(Z \) the normal closure of the subnilmanifold \(Y = \pi(H) \). If \(L \) is normal then the identity component of \(L \) is also normal; this implies that the normal closure of a connected subnilmanifold is connected.

Let \(X \) be connected and \(k \)-dimensional, and let \(Z \) be an \(l \)-dimensional connected normal subnilmanifold of \(X \). Let \(L \) be the connected normal closed subgroup of \(G \) such that \(Z = Lx \); choose Malcev coordinates on \(G \) compatible with \(L \), and let \(Q \) be the fundamental cube of \(X \) in \(G^o \) associated with these coordinates. Then the fundamental cube of \(Z \) is the subcube \([0,1]^k \times \{0\}^{k-l}\) of \(Q \), and the fundamental cube of \(X/Z \) is the orthogonal projection of \(Q \) to the \((k-l)\)-dimensional subspace associated with the last \(k-l \) coordinates on \(Q \).

Let \(X \) be connected. We will need the fact that “almost all” subnilmanifolds of \(X \) are “quite uniformly” distributed in \(X \). (This is in complete analogy with the situation on tori: if \(X \) is a torus, for any \(\varepsilon > 0 \) there are only finitely many subtori \(V_1,\ldots,V_r \), of codimension 1 in \(X \), such that any subtorus \(Y \) of \(X \) that contains 0 and is not contained in \(\bigcup_{i=1}^r V_i \) is \(\varepsilon \)-dense and “\(\varepsilon \)-uniformly distributed” in \(X \).) The following proposition is a corollary (of a special case) of the result obtained in [GT] (see Appendix for details):

Proposition 1.1. For any \(f \in C(X) \) and any \(\varepsilon > 0 \) there are finitely many subnilmanifolds \(V_1,\ldots,V_r \) of \(X \), connected, of codimension 1, and containing \(1_X \), such that for any connected sub-nilmanifold \(Y \) of \(X \) with \(1_X \in Y \), either \(Y \in V_i \) for some \(i \in \{1,\ldots,r\} \), or \(|f_Y f d\mu_Y - f_X f d\mu_X| < \varepsilon \), (or both).

Identifying a sub-nilmanifold \(Y \) of \(X \) with the measure \(\mu_Y \) on \(X \), we introduce the weak* topology on the set of sub-nilmanifolds of \(X \); in this topology, given sub-nilmanifolds \(Z, Y_1, Y_2,\ldots \) of \(X \), we write \(Y_n \to Z \) if \(\int_Y f d\mu_{Y_n} \to \int_Z f d\mu_Z \) for every \(f \in C(X) \). It now follows from Proposition 1.1 that if connected sub-nilmanifolds \(Y_1, Y_2,\ldots \) of \(X \), with \(1_X \in Y_n \) for all \(n \), are such that for any proper sub-nilmanifold \(V \) of \(X \) (connected, of codimension 1, and with \(1_X \in V \)) the set \(\{ n \in \mathbb{Z} : Y_n \subseteq V \} \) is finite, then \(Y_n \to X \).

For a set \(S \subseteq \mathbb{Z} \), the uniform (or Banach) density of \(S \) is \(\mathcal{D}(S) = \lim_{N_2-N_1 \to \infty} \left| \frac{[S \cap [N_1,N_2]]}{N_2-N_1} \right| \) \((\text{if it exists}) \). We will say that a sequence of points \((\omega_n)_{n \in \mathbb{Z}} \) of a topological space \(\Omega \) converges to \(\omega \in \Omega \) in uniform density if for every neighborhood \(U \) of \(\omega \) one has \(\mathcal{D}(\{ n \in \mathbb{Z} : \omega_n \notin U \}) = 0 \). It follows from Proposition 1.1 that, given connected sub-nilmanifolds \(Y_1, Y_2,\ldots \) of \(X \) with \(1_X \in Y_n \) for all \(n \), if for any proper sub-nilmanifold \(V \) of \(X \)
(connected, of codimension 1, and with $1_X \in V$) one has $D(\{n \in \mathbb{Z} : Y_n \subseteq V\}) = 0$, then $Y_n \rightarrow X$ in uniform density.

2. Polynomial orbits of subnilmanifolds and nilsequences

Our main technical result is the following proposition.

Proposition 2.1. Let X be connected and let $Y = \pi(H)$ be a connected subnilmanifold of X, where H is a connected closed subgroup of G. Let g be a polynomial sequence in G with $g(0) = 1_G$ such that $g(\mathbb{Z})Y$ is dense in X, and assume that G is generated by G^o and the elements of g. Let Z be the normal closure of Y in X; then $g(n)Y - g(n)Z \rightarrow 0$ in uniform density.

Remark. We believe that, actually, $g(n)Y - g(n)Z \rightarrow 0$ (that is, for any $f \in C(X)$, $|\int_{g(n)Y} f \, d\mu_{g(n)y} - \int_{g(n)Z} f \, d\mu_{g(n)z}| \rightarrow 0$ as $n \rightarrow \infty$).

Proof. Let L be the identity component of $\pi^{-1}(Z)$. Choose Malcev’s coordinates in G^o compatible with L, and let Q be the corresponding fundamental cube in G^o. Q is compact, and is as well compact with respect to the uniform norm when elements of G are interpreted as transformations of X. Represent $g(n) = t_n \gamma_n$ so that $\gamma_n \in \Gamma$ and $t_n \in Q$, $n \in \mathbb{Z}$. Since Z is normal, $\gamma_n Z = Z$ for all n, so that $g(n)Z = t_n \gamma_n Z = t_n Z$, $n \in \mathbb{Z}$. We have $g(n)Y = t_n \gamma_n Y$, $n \in \mathbb{Z}$, and since Q is compact, we only have to show that $\gamma_n Y \rightarrow Z$ in uniform density.

Let Q' be the fundamental cube of X/Z and let $\tau : Q \rightarrow Q'$ be the natural projection. Since the sequence $(g(n)Z)$ is well distributed in X, the sequence $(\tau(t_n))$ is well distributed in Q', which means that for any measurable subset U of Q' whose boundary is a null-set, $D(\{n \in \mathbb{Z} : \tau(t_n) \in U\}) = \mu_{Q'}(U)$.

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with $1_X \in V$; based on Proposition 1.1, we only need to show that the set $\{n \in \mathbb{Z} : \gamma_n Y \subseteq V\}$ has zero uniform density. Let K be the identity component of $\pi^{-1}(V)$; we have $\gamma_n H^o \gamma_n^{-1} \subseteq L$ for all $n \in \mathbb{Z}$, and have to prove that the set $S = \{n \in \mathbb{Z} : \gamma_n H^o \gamma_n^{-1} \subseteq K\}$ has zero uniform density.

Since K is a proper subgroup of L, there exists $b \in G$ such that $bHb^{-1} \not\subseteq K$. By assumption, G is generated by G^o and g. The group G^o is generated by Q, thus $tHt^{-1} \not\subseteq K$ for some $t \in Q$ or $g(n)Hg(n)^{-1} \not\subseteq K$ for some $n \in \mathbb{Z}$. So, there exists $a \in H$ such that $t^a t^{-1} \not\subseteq K$ for some $t \in Q$ or $g(n)ag(n)^{-1} \not\subseteq K$ for some $n \in \mathbb{Z}$. Let $S' = \{n \in \mathbb{Z} : \gamma_n a \gamma_n^{-1} \subseteq K\}$; since $S \subseteq S'$, it suffices to show that $D(S') = 0$. (This would not be a problem if γ_n were a polynomial sequence, but it is not.)

Consider the mapping $\eta(n, t) = t^{-1}g(n)ag(n)t$ from $\mathbb{Z}^m \times G^o$ to L; this is a polynomial mapping. Let χ be a homomorphism $L \rightarrow \mathbb{R}$ such that $K = \{\chi = 0\}$. Let $\theta = \chi \eta$; then θ is a polynomial, and it is shown above that $\theta \neq 0$. Since K has codimension 1 in L, it contains $[L, L]$, and so, is normal in L; hence, for any $s \in L$ we have $\theta(n, ts) = \chi(s^{-1}t^{-1}g(n)ag(n)^{-1}ts) = \chi(t^{-1}g(n)ag(n)^{-1}t) = \theta(n, t)$ for all $t \in G^o$, $n \in \mathbb{Z}$. Thus, θ is defined on $\mathbb{Z} \times (G^o/L)$: there exists a polynomial θ' on $\mathbb{Z} \times (G^o/L)$ such that $\theta(n, t) = \theta'(n, \tau(t))$, $t \in G^o$, $n \in \mathbb{Z}$. Let P be the restriction of θ' to $\mathbb{Z} \times Q'$. Now, $n \in S'$ iff
\(\gamma_n a_n^{-1} = t_n^{-1} g(n) a(n)^{-1} t_n \in K, \text{ iff } \theta(n, t_n) = 0, \text{ iff } P(n, \tau(t_n)) = 0.\)

Write \(P\) in coordinates on \(Q', P(n, u) = \sum_{\alpha \in A} q_\alpha(n) u^\alpha, n \in \mathbb{Z}, u \in Q'\), where \(A\) is a set of multiindices and for each \(\alpha \in A, q_\alpha(n)\) is a polynomial in \(n\). We want to show that the set of zeroes of the polynomials \(P_\alpha(u) = P(n, u) \text{ in } Q'\) “converges”, as \(n \to \infty\), to a set of zero measure. Let \(d = \max\{\deg q_\alpha, \alpha \in A\}\). Then for any \(\alpha \in A\), a finite limit \(b_\alpha = \lim_{n \to \infty} n^{-d} q_\alpha(n)\) exists, and is nonzero for some \(\alpha\). Thus, as \(n \to \infty\), the polynomials \(n^{-d} P_\alpha(u)\) converge uniformly on \(Q'\) to the nonzero polynomial \(p(u) = \sum_{\alpha \in A} b_\alpha u^\alpha\). The set \(N = \{u \in Q' : p(u) = 0\}\) has zero measure. Given \(\varepsilon > 0\), find \(\delta > 0\) such that the set \(N_{\delta} = \{u \in Q' : |p(u)| < \delta\}\) has measure \(< \varepsilon\). Let \(n_0\) be such that \(|P(n, u) - p(u)| < \delta\) on \(Q'\) for \(|n| > n_0\); then for \(|n| > n_0\) the set \(D_n = \{u \in Q' : P(n, u) = 0\}\) is contained in \(N_{\delta}\). The sequence \(u_n = \tau(t_n), n \in \mathbb{Z},\) is well distributed in \(Q'\) and the boundary of \(N_{\delta}\) is a null-set, so \(D = \{n \in \mathbb{Z} : u_n \in N_{\delta}\} = \mu Q'(N_{\delta}) < \varepsilon\). Now,\n
\[S' = \{n \in \mathbb{Z} : P(n, u_n) = 0\} \subseteq \{n \in \mathbb{Z} : u_n \in D\} \subseteq \{-n_0, \ldots, n_0\} \cup \{n \in \mathbb{Z} : u_n \in N_{\delta}\},\]

thus \(D(S') < \varepsilon\). Hence, \(D(S') = 0\). ■

Corollary 2.2. Let \(X\) be connected, let \(Y\) be a connected subnilmanifold of \(X\), let \(g\) be a polynomials sequence in \(G\), let \(g(\mathbb{Z})Y\) be dense in \(X\), and let \(f \in C(X)\). There exists a factor-nilmanifold \(\hat{X}\) of \(X\), a point \(\hat{x} \in \hat{X}\), and a function \(\hat{f} \in C(\hat{X})\) such that \(\int_{g(n)Y} f d\mu_{g(n)Y} - \hat{f}(g(n)\hat{x}) \rightarrow 0\) in uniform density.

Proof. We may assume that \(g(0) = 1_G\), that \(G\) is generated by \(G^\circ\) and the elements of \(g\), and that \(Y \supseteq 1_X\). Let \(Z\) be the normal closure of \(Y\) in \(X\), then \(\int_{g(n)Y} f d\mu_{g(n)Y} - \int_{g(n)Z} f d\mu_{g(n)Z} \rightarrow 0\) in uniform density. Let \(\hat{X} = X/Z, \hat{x} = \{Z\} \in \hat{X}\), and \(\hat{f} = E(f|\hat{X}) \in C(\hat{X})\); then \(\int_{g(n)Y} f d\mu_{g(n)Y} - \int_{g(n)Z} f d\mu_{g(n)Z} \rightarrow 0\) in uniform density, and \(\int_{g(n)Z} f d\mu_{g(n)Z} = \hat{f}(g(n)\hat{x})\) for all \(n\). ■

We now involve nilsequences into our consideration. Recall that a basic \(d\)-step nilsequence is a sequence of the form \(\psi(n) = h(R^n w), \text{ where } w \text{ is a point of a } d\text{-step nilmanifold } M, R \text{ is a translation on } M, \text{ and } h \in C(M)\). We find it worthy to expand this notion. Given a polynomial sequence \(g(n) = a_1^{p_1(n)} \cdots a_r^{p_r(n)}\) in a nilpotent group with \(\deg p_i \leq s\) for all \(i\), we will say that \(g\) has naive degree \(\leq s\). (The term “degree” had already been reserved for another parameter of a polynomial sequence.) Let us call a sequence of the form \(\psi(n) = h(g(n)w)\), where \(w\) is a point of a \(d\)-step nilmanifold \(M = J/\Lambda, g\) is a polynomial sequence of naive degree \(\leq s\) in \(J\), and \(h \in C(M)\), a basic polynomial \(d\)-step nilsequence of degree \(\leq s\). Actually, any basic polynomial nilsequence is a basic nilsequence, as the following proposition says; the reason why we introduce this notion is that we do not want to loose the valuable information about the way a nilsequence was produced.

Proposition 2.3. (See [L1], Proposition 3.14) Any basic polynomial \(d\)-step nilsequence of degree \(\leq s\) is a \(ds\)-step basic nilsequence.

Clearly, basic polynomial \(d\)-step nilsequences of degree \(\leq s\) form an algebra; we will also need the following fact:
Lemma 2.4. Let \(\psi_0, \ldots, \psi_{m-1} \) be basic polynomial \(d \)-step nilsequences of degree \(\leq s \). Then the sequence \((\ldots, \psi_0(0), \ldots, \psi_{m-1}(0), \psi_0(1), \ldots, \psi_{m-1}(1), \psi_0(2), \ldots, \psi_{m-1}(2), \ldots) \) is also a basic polynomial \(d \)-step nilsequence of degree \(\leq s \).

Proof. For each \(i = 0, \ldots, m - 1 \), let \(M_i = J_i / \Lambda_i \) be the \(d \)-step nilmanifold, \(g_i \) be the polynomial sequence in \(J_i \), \(w_i \in M_i \) is the point, and \(h_i \in C(M_i) \) be the function such that \(\psi_i(n) = h(g_i(n)w_i), n \in \mathbb{Z} \). If, for some \(i \), \(J_i \) is not connected, it is a factor-group of a free \(d \)-step nilpotent group with continuous and discrete generators, which, in its turn, is a subgroup of a free \(d \)-step nilpotent group with only continuous generators (see [L1]); thus after replacing, if needed, \(M_i \) by a larger nilmanifold and extending \(h_i \) to a continuous function on this nilmanifold we may assume that every \(J_i \) is connected. In this case for any element \(b \in J_i \) and any \(r \in \mathbb{N} \) a \(r \)-th root \(b^{1/r} \) exists in \(J_i \), and thus the polynomial sequence \(b^{p(n)} \) in \(J_i \) makes sense even if a polynomial \(p \) has non-integer rational coefficients. Thus, for each \(i \), we may construct a polynomial sequence \(g'_i \) in \(J_i \), of the same naive degree as \(g_i \), such that \(g'_i(mm + i) = g_i(n) \) for all \(n \in \mathbb{Z} \). Put \(M = \mathbb{Z}_m \times \prod_{i=0}^{m-1} M_i \), \(g = (1, g'_0, \ldots, g'_{m-1}), w = (w_0, w_1, \ldots, w_{m-1}) \in M \), and \(h(i, v_0, \ldots, v_{m-1}) = h_i(v_i), (i, v_0, \ldots, v_{m-1}) \in M \). Then \(M \) is a \(d \)-step nilmanifold, \(h \in C(M) \), and the basic polynomial nilsequence \(\psi(n) = h(g(n)w) = h_i(g'_i(n)w_i) = h_i(g_i(k)w_i) = \psi_i(k) \) whenever \(n = km + i, i = 0, 1, \ldots, m - 1 \).

We now get:

Theorem 2.5. Let \(X = G / \Gamma \) be a \(d \)-step nilmanifold, let \(Y \) be a subnilmanifold of \(X \), let \(g \) be a polynomial sequence in \(G \) of naive degree \(\leq s \), let \(f \in C(X) \), and let \(\varphi(n) = \int_{g(n)Y} f \, d\mu_{g(n)}Y \), \(n \in \mathbb{Z} \). There exists a basic polynomial \(d \)-step nilsequence \(\psi \) of degree \(\leq s \) such that \(\varphi(n) - \psi(n) \longrightarrow 0 \) in uniform density.

Proof. If both \(Y \) and \(\overline{g(\mathbb{Z})Y} \) are connected (in which case \(\overline{g(\mathbb{Z})Y} \) is a nilmanifold), the assertion follows from Corollary 2.2.

Now assume that \(Y \) is connected but \(\overline{g(\mathbb{Z})Y} \) is not. Then, by Theorem B in [L1], there exists \(m \in \mathbb{N} \) such that \(\overline{g((m\mathbb{Z} + j)Y)} \) is connected for every \(i = 0, \ldots, m - 1 \). Thus, for every \(i = 0, \ldots, m - 1 \), there exists a basic polynomial \(d \)-step nilsequence \(\psi_i \) of degree \(\leq s \) such that \(\varphi(mn + i) - \psi_i(n) \longrightarrow 0 \) in uniform density, and the assertion follows from Lemma 2.4.

Finally, if \(Y \) is disconnected and \(Y_1, \ldots, Y_l \) are the connected components of \(Y \), then

\[
\int_{g(n)Y} f \, d\mu_{g(n)}Y = \sum_{i=1}^{l} \int_{g(n)Y_i} f \, d\mu_{g(n)}Y_i, \quad n \in \mathbb{Z},
\]

and the result holds since it holds for \(Y_1, \ldots, Y_l \).

3. Multiple polynomial correlation sequences and nilsequences

Now let \((W, B, \mu)\) be a probability measure space and let \(T \) be an ergodic invertible measure preserving transformation of \(W \). Let \(p_1, \ldots, p_k \) be polynomials taking on integer values on the integers. Let \(A_1, \ldots, A_k \in B \) and let \(\varphi(n) = \mu(T^{p_1(n)}A_1 \cap \cdots \cap T^{p_k(n)}A_k), n \in \mathbb{Z} \); or, more generally, let \(h_1, \ldots, h_k \in L^\infty(W) \) and \(\varphi(n) = \int_W T^{p_1(n)}h_1 \cdots T^{p_k(n)}h_k \, d\mu, n \in \mathbb{Z} \). Using results from [HK2] it can be shown (see the argument in [BHK], Corollary 4.5) that, given \(\varepsilon > 0 \), there exist a \(d \)-step nilsystem \((X, a), X = G / \Gamma, a \in G \), and functions \(f_1, \ldots, f_k \in L^\infty(X) \) such that, for \(\phi(n) = \int_X a^{p_1(n)}f_1 \cdots a^{p_k(n)}f_k \, d\mu_X, \mathcal{D}\{n \in \mathbb{Z} : \)
Proof. We copy the proof of Theorem 1.9 in [BHK]. For each density, and polynomial \(d\) nilsequence \(\psi\) of on the integers, and let \(\phi\) of degree \(Y\) the diagonal subnilmanifold \(c\) minimal integer that tends to 0 in uniform density.

\[\text{We believe that Theorem 3.1 remains true without the assumption that} \]

\[\text{Remark.} \]

\[\text{We now switch to the multiparameter case, that is, to the situation where} \]

\[\text{4. The multiparameter case} \]
polynomials of \(m \geq 1 \) integer variables. We say that a mapping \(g : \mathbb{Z}^m \to G \) is an \((m\text{-parameter})\) polynomial sequence in \(G \) if \(g(n) = a_{1}^{p_{1}(n)} \ldots a_{r}^{p_{r}(n)} \), where \(a_{1}, \ldots, a_{r} \in G \) and \(p_{1}, \ldots, p_{r} \) are polynomials \(\mathbb{Z}^m \to \mathbb{Z} \). It is shown in [L2] that, if \(g \) is an \(m\text{-parameter} \) polynomial sequence in \(G \) and \(Y \) is a connected submanifold of \(X \), then the closure of the sequence \(g(n)Y \), \(X' = \bigcup_{n \in \mathbb{Z}^m} g(n)Y \), is a disjoint finite union of sub-nilmanifolds of \(X \), and, if \(X' \) is a single sub-nilmanifold, the sequence \(g(n)Y \) is well distributed in \(X' \). (That is, for every \(f \in C(X') \) and any \(\text{Følner sequence} \) \(\left(\Phi_{N} \right) \) in \(\mathbb{Z}^m \),

\[
\lim_{N \to \infty} \frac{1}{|\Phi_{N}|} \sum_{n \in \Phi_{N}} f g(n)Y = \int_{X'} f d\mu_{X'}.
\]

For a subset \(S \subseteq \mathbb{Z}^m \), we define the density \(d(S) \) of \(S \) by \(d(S) = \lim_{N \to \infty} \frac{|S \cap [-N,N]^m|}{(2N)^m} \), if it exists, and say that a sequence \(\left(\omega_{n} \right)_{n \in \mathbb{Z}^m} \) of a topological space \(\Omega \) converges to \(\omega \in \Omega \) in density if for every neighborhood \(U \) of \(\omega \),

\[
d\left(\{ n \in \mathbb{Z}^m : \omega_{n} \notin U \} \right) = 0.
\]

For the case of multparameter sequences we get a result similar to Proposition 2.1, but weaker since the “ordinary” density instead of the uniform density \(D \) appears in it:

Proposition 4.1. Let \(X = G/\Gamma \) be a connected nilmanifold and let \(Y = \pi(H) \) be a connected subnilmanifold of \(X \), where \(H \) is a connected closed subgroup of \(G \). Let \(g : \mathbb{Z}^m \to G \) be a polynomial sequence with \(g(0) = 1_{G} \) such that \(g(\mathbb{Z}^m)Y \) is dense in \(X \), and assume that \(G \) is generated by \(G^{o} \) and the elements of \(g \). Let \(Z \) be the normal closure of \(Y \) in \(X \); then \(g(n)Y - g(n)Z \to 0 \) in density.

Proof. The beginning of the proof is the same as for Proposition 2.1, but we will repeat it. Let \(L \) be the identity component of \(\pi^{-1}(Z) \). Choose Malcev coordinates in \(G^{o} \) compatible with \(L \), and let \(Q \) be the corresponding fundamental cube in \(G^{o} \). \(Q \) is compact, and is as well compact with respect to the uniform norm when elements of \(G \) are interpreted as transformations of \(X \). Represent \(g(n) = t_{n}\gamma_{n} \) so that \(\gamma_{n} \in \Gamma \) and \(t_{n} \in Q \), \(n \in \mathbb{Z}^m \). Since \(Z \) is normal, \(\gamma_{n}Z = Z \) for all \(n \), so that \(g(n)Z = t_{n}\gamma_{n}Z = t_{n}Z \), \(n \in \mathbb{Z}^m \). We have \(g(n)Y = t_{n}\gamma_{n}Y \), \(n \in \mathbb{Z}^m \), and since \(Q \) is compact, we only have to show that \(\gamma_{n}Y \to Z \) in density. Let \(Q' \) be the fundamental cube of \(X/Z \) and let \(\tau : Q \to Q' \) be the natural projection. Since the sequence \((g(n)Z) \) is well distributed in \(X \), the sequence \((\tau(t_{n})) \) is well distributed in \(Q' \).

Let \(V \) be a subnilmanifold of \(Z \), connected, of codimension 1 in \(Z \), and with \(1_{X} \in V \); based on Proposition 1.1, we only need to show that the set \(\{ n \in \mathbb{Z}^m : \gamma_{n}Y \subseteq V \} \) has zero density. Let \(K \) be the identity component of \(\pi^{-1}(V) \); we have \(\gamma_{n}H\gamma_{n}^{-1} \subseteq L \) for all \(n \in \mathbb{Z}^m \), and have to prove that the set \(S = \{ n \in \mathbb{Z}^m : \gamma_{n}H\gamma_{n}^{-1} \subseteq K \} \) has zero density.

Since \(K \) is a proper subgroup of \(L \) and \(L \) is the normal closure of \(H \) in \(G \) there exists \(b \in G \) such that \(bHb^{-1} \notin K \). By assumption, \(G \) is generated by \(G^{o} \) and \(g \). The group \(G^{o} \) is generated by \(Q \), thus \(tHt^{-1} \notin K \) for some \(t \in Q \) or \(g(n)Hg(n)^{-1} \notin K \) for some \(n \in \mathbb{Z}^m \). So, there exists \(a \in H \) such that \(ata^{-1} \notin K \) for some \(t \in Q \) or \(g(n)ag(n)^{-1} \notin K \) for some \(n \in \mathbb{Z}^m \). Let \(S' = \{ n \in \mathbb{Z}^m : \gamma_{n}a\gamma_{n}^{-1} \subseteq K \} \); since \(S \subseteq S' \), it suffices to show that \(d(S') = 0 \).

Consider the mapping \(\eta(n,t) = t^{-1}g(n)ag(n)^{-1}t \) from \(\mathbb{Z}^m \times G^{o} \) to \(L \); this is a polynomial mapping. Let \(\chi \) be a homomorphism \(L \to \mathbb{R} \) such that \(K = \{ \chi = 0 \} \). Let \(\theta = \chi \eta \); then \(\theta \) is a polynomial, and it is shown above that \(\theta \neq 0 \). Since \(K \) is normal in \(L \), for any \(s \in L \) we have \(\theta(n,ts) = \chi(-s^{-1}t^{-1}g(n)ag(n)^{-1}ts) = \chi(t^{-1}g(n)ag(n)^{-1}t) = \theta(n,t) \) for all \(t \in G^{o} \), \(n \in \mathbb{Z}^m \). Thus, \(\theta \) is defined on \(\mathbb{Z}^m \times (G^{o}/L) \); there exists a polynomial \(\theta' \) on
$\mathbb{Z}^m \times (G^o/L)$ such that $\theta(n, t) = \theta'(n, \tau(t))$, $t \in G^o$, $n \in \mathbb{Z}^m$. Let P be the restriction of θ' to $\mathbb{Z}^m \times Q'$. Now, $n \in S'$ iff $\gamma_n \alpha_\gamma^{-1} = t_n^{-1}g(n)ag(n)^{-1}t_n \in K$, iff $\theta(n, t_n) = 0$, iff $P(n, \tau(t_n)) = 0$.

Extend P to a polynomial on $\mathbb{R}^m \times Q'$. Write P in coordinates: $P(w, u) = \sum_{\alpha \in A} q_\alpha(w)u^\alpha$, where A is a set of multiindices and for each $\alpha \in A$, q_α is a polynomial on \mathbb{R}^m. Let $d = \max\{\deg q_\alpha, \alpha \in A\}$. For each $\alpha \in A$, let q_α^m be the homogeneous part of q_α of degree d. Let S be the sphere $\{x \in \mathbb{R}^m : |x| = 1\}$ and let $\Xi = \{\xi \in S : q_\alpha^m(\xi) \neq 0 \text{ for some } \alpha \in A\}$. For every $\xi \in S$ and $\alpha \in A$, $\lim_{s \to \infty} s^{-d}q_\alpha(s\xi) = q_\alpha^m(\xi)$, thus the polynomials $P(s\xi, u) = s^{-d}P(s\xi, u)$ converge as $s \to \infty$ to the polynomial $P_\xi(u) = \sum_{\alpha \in A} q_\alpha^m(\xi)u^\alpha$ uniformly on $S \times Q'$. (Example: for $P((w_1, w_2), (u_1, u_2)) = (w_3^2 + w_4w_1^2u_1^2 + w_2w_1u_2w_2)$ we have $P_\xi(u_1, u_2) = w_3^2u_1^2 + 2w_1w_2u_2$, $\xi = (w_1, w_2) \in S$, and $\Xi = \{\xi \in S : P_\xi \neq 0\} = \{(u_1, u_2) \in S : w_1 \neq 0\}$.)

Fix $\varepsilon > 0$. For $\xi \in \Xi$, let $N_\xi = \{u \in Q' : P_\xi(u) = 0\}$ and let $\delta_\xi > 0$ be such that the set $N_{\xi, \delta_\xi} = \{u \in Q' : |p_\xi(u)| < \delta_\xi\}$ has measure $< \varepsilon$. Let $U_{\xi} \subset \Xi$ be an open neighborhood of ξ such that $|P_\xi(u) - P_\xi(\xi)| < \delta_\xi/2$ for all $\xi \in U_{\xi}$ and $u \in Q'$. Let $s_\xi > 0$ be such that $|s^{-d}P_s(s\xi, u) - P_\xi(u)| < \delta_\xi/2$ for all $s > s_\xi$, $\xi \in U_{\xi}$, and $u \in Q'$. Then for any $s > s_\xi$ and $\xi \in U_{\xi}$, $u \in Q' : P(s\xi, u) = 0 \subset N_{\xi, \delta_\xi}$. Since the sequence $u_n = \tau(t_n), n \in \mathbb{Z}^m$, is well distributed in Q', for every $\xi \in \Xi$ there exists $M_\xi \in \mathbb{N}$ such that for any $M > M_\xi$ and any $v \in \mathbb{R}^m$, $\left\lfloor \frac{1}{M^m} \right\rfloor \left\{n \in v + [1, M]^m : u_n \in N_{\xi, \delta_\xi}\right\} < 2\varepsilon$. If $v \in \mathbb{R}^m$ and $M \in \mathbb{N}$ are such that $|v| > s_\xi + \sqrt{m}M$ and $v + [1, M]^m \subset \mathbb{R}_+U_{\xi}$, then for any $w \in v + [1, M]^m$ we have $\{u \in Q' : P(w, u) = 0\} \subset N_{\xi, \delta_\xi}$. Thus, for such v and M, $\left\lfloor \frac{1}{M^m} \right\rfloor \left\{n \in v + [1, M]^m : P(n, u_n) = 0\right\} < 2\varepsilon$, and hence, $\left\lfloor \frac{1}{M^m} \right\rfloor |S' \cap (v + [1, M]^m)| < 2\varepsilon$. Let $E = \Sigma \setminus \Xi$ is a proper algebraic subvariety of Σ, therefore there exists a compact set $D \subset \Xi$ such that $d(\mathbb{R}_+D \cap \mathbb{Z}^m) > 1 - \varepsilon$. (Indeed, E can be represented as a finite union of smooth submanifolds of Σ of dimension $\leq m - 2$, thus it can be covered by a finite union \mathcal{E} of open balls with $\sigma(\mathcal{E}) < \varepsilon\sigma(\Sigma)$, where σ is the standard $(m - 1)$-dimensional volume on Σ. For such a set \mathcal{E} we have $d(\mathbb{R}_+\mathcal{E} \cap \mathbb{Z}^m) = \sigma(\mathcal{E})/\sigma(\Sigma) < \varepsilon$, and for $D = \Sigma \setminus \mathcal{E}$ we have $d(\mathbb{R}_+D \cap \mathbb{Z}^m) > 1 - \varepsilon$.) Let ξ_1, \ldots, ξ_l be such that $\bigcup_{j=1}^l U_{\xi_j} \supset D$ and let $s = \max_{1 \leq j \leq l} s_{\xi_j}$, $M = \max_{1 \leq j \leq l} M_{\xi_j}$. Let $r > s + \sqrt{m}M$ be such that for any cube $C = v + [1, M]^m \subset \mathbb{R}_+D$ with $|v| > r$ we have $C \subset \mathbb{R}_+U_{\xi_j}$ for some j. Then for any such cube C we have $\frac{1}{|C|} |S' \cap C| < 2\varepsilon$. Thus, $d(S') < 3\varepsilon$. Hence, $d(S') = 0$.}

Remark. The proof of Proposition 4.1 gives more information about the set $S = \{n \in \mathbb{Z}^m : |\int g(n) f - \int g(n) Z f| > \varepsilon\}$ than just the fact that S has zero density. Actually, the uniform density of S is zero, if we ignore a small set \mathcal{E} of “bad” directions in \mathbb{R}^m; indeed, S has uniform density 0 in $\mathbb{R}_+(\Sigma \setminus \mathcal{E}) \cap \mathbb{Z}^m$, whereas $\sigma(\mathcal{E}) < \varepsilon\sigma(\Sigma)$.

We say that a mapping $\psi: \mathbb{Z}^m \longrightarrow \mathbb{C}$ is a basic polynomial d-step m-parameter nilsequence of degree $\leq s$ if there exist a d-step nilmanifold $M = J/\Lambda$, a polynomial mapping $g: \mathbb{Z}^m \longrightarrow J$ of naive degree $\leq s$, a function $h \in C(M)$, and a point $w \in M$ such that $\psi(n) = h(g(n)w), n \in \mathbb{Z}^m$, and we will say that an m-parameter numerical sequence is a polynomial d-step nilsequence of degree $\leq s$ if it is a uniform limit of basic polynomial d-step m-parameter nilsequences of degree $\leq s$. The definitions and facts related to one-parameter polynomial sequences and nilsequences are translated almost literally to the
multiparameter case; one only has to use results from [L2] and [L3] instead of the corresponding results from [L1] and [HK2]. (In particular, any (basic) polynomial m-parameter nilsequence is a (basic) m-parameter nilsequence; see the proof of Theorem B* in [L2].) In the same way as we got Theorems 2.5 and 3.1, we now obtain:

Theorem 4.2. Let $X = G/\Gamma$ be a d-step nilmanifold, let Y be a subnilmanifold of X, let $g: \mathbb{Z}^m \to G$ be a polynomials sequence of naive degree $\leq s$, let $f \in C(X)$, let $\varphi(n) = \int_{g(n)Y} f \, d\mu_{g(n)Y}$, $n \in \mathbb{Z}^m$. There exists a basic polynomial d-step m-parameter nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \to 0$ in density.

Theorem 4.3. Let (W, B, μ, T) be an ergodic invertible measure preserving system with $\mu(W) < \infty$, let $h_1, \ldots, h_k \in L^\infty(W)$, let p_1, \ldots, p_k be polynomials $\mathbb{Z}^m \to \mathbb{Z}$, and let $\varphi(n) = \int_W T^{p_1(n)} h_1 \cdot \ldots \cdot T^{p_k(n)} h_k \, d\mu$, $n \in \mathbb{Z}^m$. Let the complexity of $\{p_1, \ldots, p_k\}$ be c and let $s = \max_i (\deg p_i)$; then there exists a $(c+1)$-step m-parameter polynomial nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \to 0$ in density.

5. Appendix

We will show here how Proposition 1.1 can be derived from Green-Tao’s result in [GT].

We first need to introduce some terminology from [GT]. Let G be a connected nilpotent Lie group with a discrete cocompact subgroup Γ, and let $X = G/\Gamma$.

A filtration G_\bullet on G is a finite decreasing sequence of subgroups $G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_d \supseteq G_{d+1} = \{1_G\}$ with the property that $[G_i, G_j] \subseteq G_{i+j}$ for all i, j.

For a sequence $g: \mathbb{Z} \to G$, “the derivative” ∂g is defined by $(\partial g)(n) = g(n)^{-1} g(n+1)$, $n \in \mathbb{Z}$. Given a filtration $G_\bullet = (G_1 \supseteq G_2 \supseteq \ldots \supseteq G_d)$ on G, $\text{poly}(\mathbb{Z}, G_\bullet)$ denotes the group of polynomial sequences g in G with the property that, for each $i = 1, \ldots, d$, $\partial^i g$ takes values in G_i.

Given a filtration $G_\bullet = (G_1 \supseteq G_2 \supseteq \ldots \supseteq G_d)$ on G, a Malcev basis \mathcal{M} adapted to this filtration can be constructed (which means that for any i, $\mathcal{M} \cap G_i$ is a basis in G_i), and this basis naturally defines a locally Euclidean metric ρ on X.

A (horizontal) character on X is a mapping $\chi: X \to \mathbb{R}/\mathbb{Z}$ induced by a character on the torus $T = [G, G]\setminus X$ (or equivalently, by a continuous homomorphism $G \to \mathbb{R}/\mathbb{Z}$ trivial on Γ). A Malcev basis in G defines coordinates (t_1, \ldots, t_l) on T, and in these coordinates any character χ on X has the form $m_1 t_1 + \ldots + m_l t_l$, $(t_1, \ldots, t_l) \in T$, with $m_1, \ldots, m_l \in \mathbb{Z}$; the modulus $|\chi|$ of χ is defined by $|\chi| = |m_1| + \ldots + |m_l|$.

Given $\delta > 0$, a finite sequence (x_1, \ldots, x_N) is said to be δ-equidistributed in X if $|\frac{1}{N} \sum_{n=1}^N f(x_n) - \int_X f \, d\mu_X| < \delta \|f\|_{\text{Lip}}$ for any Lipschitz function f on X, where $\|f\|_{\text{Lip}} = \sup|f| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{\rho(x, y)}$.

The following theorem was obtained in [GT]:

Theorem 5.1. ([GT] Theorem 1.16) Let G_\bullet be a filtration on G and let $g \in \text{poly}(\mathbb{Z}, G_\bullet)$. There exist constants C and c, which only depend on X, such that for any $\delta > 0$ small enough and any $N \in \mathbb{N}$, either the sequence $(g(n))_{n=1}^N$ is δ-equidistributed in X, or there is a nontrivial character χ on X with $|\chi| < C\delta^{-c}$ such that $|\chi(g(n)) - \chi(g(n-1))| < C\delta^{-c}/N$.

11
for all \(n \in \{1, \ldots, N\} \).

(In this theorem and below, the “either ... or ...” expression should be understood in the “inclusive” sense, that is, that both possibilities may also occur simultaneously.)

(We skipped some details; in particular, there is also a condition on the Malcev basis chosen in \(G \) and so, on the metric on \(X \); this condition is satisfied if \(\delta \) is small enough.)

We do not need much from this very strong “quantitative” theorem. Let \(X \) be connected but \(G \) not necessarily connected; represent \(X \) as \(X = G^o/(\Gamma \cap G^o) \). Define the filtrations \(G_\bullet = \{G_1 \supseteq G_2 \supseteq \ldots\} \) on \(G \) and \(G_\bullet^o = \{G_1^o \supseteq G_2^o \supseteq \ldots\} \) on \(G^o \) by \(G_1 = G_1^o \), \(G_i = [G_{i-1}, G] \) for \(i \geq 2 \), and \(G_i^o = G_i \cap G^o \). Let \(f \in C(X) \), and let \(\varepsilon > 0 \). Choose a Lipschitz function \(h \) on \(X \) with \(|h - f| < \varepsilon/3 \). Choose \(\delta > 0 \) small enough to satisfy Theorem 5.1 and such that \(\delta \|f\|_{\text{Lip}} < \varepsilon/3 \). Let \(\chi_1, \ldots, \chi_r \) be the nontrivial characters on \(X \) satisfying \(|\chi_i| < C\delta^{-c} \). Then for any \(g \in \text{poly}(\mathbb{Z}, G_\bullet) \) and \(N \in \mathbb{N} \), either there exists \(i \) such that \(|\chi_i(g(n)1_X) - \chi_i(g(n-1)1_X)| < C\delta^{-c}/N \) for all \(n = 1, \ldots, N \), or \(\frac{1}{N} \sum_{n=1}^{N} h(g(n)1_X) - \int_X h \, d\mu_X \) \(< \delta \|f\|_{\text{Lip}} \), and then \(\frac{1}{N} \sum_{n=1}^{N} f(g(n)1_X) - \int_X f \, d\mu_X \) \(< \varepsilon \). Sending \(N \) to infinity, we get that either \(\chi_i(g(n)1_X) \equiv 1 \) for some \(i \), or \(\limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} f(g(n)1_X) - \int_X f \, d\mu_X \right| \leq \varepsilon \).

Now let \(Y \) be a connected subnilmanifold of \(X \) with \(1_X \in Y \). Choose an element \(a \in G \) such that the sequence \((a^n1_X)_{n \in \mathbb{N}} \) is dense in \(Y \). Choose \(\gamma \in \Gamma \) such that \(\gamma a^{-1} \in G^o \). (Such \(\gamma \) exists since \(X = G/\Gamma \) is connected.) Put \(g(n) = a^n\gamma^{-n} \), \(n \in \mathbb{N} \); then \(g(n)1_X = a^n1_X \) for all \(n \), and since \(g \in \text{poly}(\mathbb{Z}, G_\bullet) \) and \(g(n) \in G^o \) for all \(n \), we have \(g \in \text{poly}(\mathbb{Z}, G_\bullet^o) \). Let \(\chi_1, \ldots, \chi_r \) be as above, let \(V_i' = \{x \in X : \chi_i(x) = 0\} \), \(i = 1, \ldots, r \), and for each \(i \), let \(V_i \) be the connected component of the nilmanifold \(V_i' \) that contains \(1_X \). We have that either \(\chi_i(a^n1_X) \equiv 1 \) for some \(i \), or \(\limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} f(a^n1_X) - \int_X f \, d\mu_X \right| \leq \varepsilon \). In the first case, \(Y \subseteq V_i' \), and so, \(Y \subseteq V_i \); in the second case, since \(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(a^n1_X) = \int_Y f \, d\mu_Y \) by \([\text{L1}]\) (or by one more application of Theorem 5.1), we get that \(\left| \int_Y f \, d\mu_Y - \int_X f \, d\mu_X \right| \leq \varepsilon \). We obtain

Corollary (Proposition 1.1). Let \(X \) be a connected nilmanifold. For any \(f \in C(X) \) and any \(\varepsilon > 0 \) there are subnilmanifolds \(V_1, \ldots, V_r \) of \(X \), connected, of codimension 1, and containing \(1_X \), such that for any connected subnilmanifold \(Y \) of \(X \) with \(1_X \in Y \), either \(Y \in V_i \) for some \(i \in \{1, \ldots, r\} \), or \(\left| \int_Y f \, d\mu_Y - \int_X f \, d\mu_X \right| < \varepsilon \).

Acknowledgment. I thank Vitaly Bergelson for corrections and good advice. I also thank an anonymous referee and Dan Rudolph, the editor, for corrections and help in preparing this paper.

Bibliography

[GT] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,

