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Abstract

Given a pair of vector spaces V and W over a countable field F and a
probability space X, one defines a polynomial measure preserving action of V
on X to be a composition T ◦ ϕ, where ϕ:V −→ W is a polynomial mapping
and T is a measure preserving action of W on X. We show that the known
structure theory of measure preserving group actions extends to polynomial
actions and establish a Furstenberg-style multiple recurrence theorem for such
actions. Among the combinatorial corollaries of this result are a polynomial
Szemerédi theorem for sets of positive density in finite dimensional modules
over integral domains as well as the following fact: Let P be a finite family of
polynomials with integer coefficients and zero constant term. For any α > 0
there exists N ∈ N such that whenever F is a field with |F | ≥ N and E ⊆ F
with |E|/|F | ≥ α, there exist u ∈ F , u 6= 0, and w ∈ E such that w + ϕ(u) ∈ E
for all ϕ ∈ P.

0. Introduction

Many familiar theorems of combinatorics and number theory establish combinatorial
and/or arithmetic richness of large sets in groups or rings. For example, Szemerédi’s
theorem ([Sz]) states that any set E of natural numbers having positive upper density

d̄(E) = lim supN→∞
|E∩{1,...,N}|

N > 0 contains arbitrarily long arithmetic progressions. An
equivalent formulation, more geometric in spirit, says that if a set E ⊆ N satisfies d̄(E) > 0
then for any finite set S ⊂ Z there exist x ∈ E and n ∈ N such that x + nS = {x + ns :
s ∈ S} ⊂ E. In other words, sets of positive upper density in N contain homothetic
images of every finite set of integers. An ergodic-theoretic proof of Szemerédi’s theorem
given by Furstenberg in [F1] has connected density combinatorics with the phenomenon
of multiple recurrence in ergodic theory and has led to powerful new results in this vein
for which no non-ergodic proofs have been offered. (The original proof of Szemerédi’s
theorem, by contrast, is purely combinatorial, and Gowers in [G] provides yet another
non-ergodic proof, with very good bounds, proceeding via harmonic analysis.) In order
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to formulate some results of this type, we introduce the following more general notion of
upper density: if G is a countable abelian group and E ⊂ G, the upper Banach density of

E is given by d∗(E) = sup{Φn} lim sup
n→∞

|E∩Φn|
|Φn|

, where the supremum here is taken over all

Følner sequences for G. Now, our first example of a result having as yet no non-ergodic
proof is a multidimensional version of Szemerédi’s theorem established by Furstenberg
and Katznelson in [FK1], which states that if d ∈ N and E ⊆ Zd with d∗(E) > 0 then
E contains homothetic images of every finite set S ⊂ Zd. Our second such result is an
extension of the first: a polynomial Szemerédi theorem ([BL1]) which says, roughly, that
for any polynomial mapping P :Zd −→ Zc, d, c ∈ N, it is the case that every subset E ⊆ Zc

with d∗(E) > 0 contains “homothetic affine P -images” of all finite subsets of Zd:

Theorem PSZ. Let P :Zd −→ Zc be a polynomial mapping with P (0) = 0 and suppose
E ⊂ Zc with d∗(E) > 0. For any finite set S ∈ Zd there exist u ∈ Zc and n ∈ Z, n 6= 0,
such that u+ P (nS) =

{
u+ P (ns) : s ∈ S

}
⊂ E.

From Theorem PSZ one can derive the following finitary version (which is easily shown
to be equivalent to Theorem PSZ):

Theorem PSZf. Let P be a polynomial mapping Zd −→ Zc with P (0) = 0 and suppose
S is a finite subset of Zd. For any α > 0 there exists N such that whenever m > N and
E is a subset of {1, . . . ,m}c with |E|/mc > α, there exist u ∈ Zc and n ∈ Z, n 6= 0, such
that u+ P (nS) ⊂ E.

It is natural to inquire whether Theorem PSZ is a manifestation of a phenomenon
pertaining to polynomial mappings of more general structures. In particular, one would
like to know whether statements analogous to Theorems PSZ and PSZf hold for modules
over arbitrary rings. Another natural question is whether there exists a result about
polynomial mappings of finite fields which would be analogous to Theorem PSZf. A strong
indication that one might expect affirmative answers to these questions is provided by the
validity of a polynomial Hales-Jewett theorem ([BL2]), from which one can derive partition
results of this kind.

The goal of this paper is to show that the answers to the questions raised above
are positive in certain cases. For example the following two theorems appear below as
Theorems 5.10 and 5.16.

Theorem. Let K be a countable integral domain, let M be a finitely generated K-module
and let ϕ be a polynomial Kd −→ M with ϕ(0) = 0. For any finite set S ⊂ Kd and any
E ⊆M with d∗(E) > 0 there exist u ∈ K, u 6= 0, and w ∈ E such that w + ϕ(uS) ⊂ E.

Theorem. Let P be a finite family of integer polynomials with zero constant term. There
exists N ∈ N such that whenever F is a finite field with |F | ≥ N and E ⊆ F with
|E| ≥ α|F |, there exist u ∈ F , u 6= 0, and w ∈ E such that w + ϕ(u) ∈ E for all ϕ ∈ P.

To achieve our goal we use the ergodic method pioneered in Furstenberg’s seminal pa-
per [F1], which allows one to reduce the original combinatorial problem to that of demon-
strating a type of multiple recurrence in measure preserving systems. However, in order to
obtain the results in their proper generality one has to circumvent some obstacles which
were not present in the more special situations treated in [FK1] and [BL1]. The first major

2



problem is related to the fact that the structures we deal with (integral domains, e.g. Z[x],
countable fields, etc.) may be infinitely generated as abelian groups. While this would
not apriori be an issue if we considered only linear expressions, it becomes relevant when
polynomial expressions ϕ are considered, due to the fact that we are forced to work with
“derivatives” of ϕ having the form ϕv(u) = ϕ(u + v) − ϕ(u) − ϕ(v), where v can be any
element of the infinitely generated group under consideration. (Note these are identically
zero when ϕ is linear.) The issue, then, is not so much infinite generation of the v’s as
infinite generation of the ϕv’s that come into play, despite the fact that we start with only
finitely many ϕ’s. Such complications do not arise when the underlying group is finitely
generated, nor do they arise when the expressions involved are linear. The difficulties are
in fact confined to a single portion of the proof, and this portion is unique to the ergodic
setup; namely the existence of so-called primitive extensions.

The difficulties arising when polynomials are mixed with infinite generation are not
new. We deal here with the most common mode of convergence in ergodic theory, namely
that based on Cesáro averaging, but there is another type of convergence, so-called IP-
convergence, that may be employed as a potential alternative strategy (see [FK2], [FK3],
[BFM] and [BM]). Ergodic theorems phrased in the language of IP-convergence have a
familiar look: certain sequences of unitary operators have limits that turn out to be or-
thogonal projections. These ergodic theorems form the core of an IP-structure theory on
which are based the proofs of IP Szemerédi-type results. As of now, the existing lines of
argument seem not to work when the families of “derivatives” of the IP expressions dealt
with are infinitely generated. Indeed, a counter-example in [BFM] shows that, even in the
most basic case (pertaining to single recurrence), known polynomial IP ergodic theorems
do not carry over to the infinitely generated situation. Limits of certain IP-like expres-
sions having a polynomial nature need not necessarily be orthogonal projections, and it
is therefore unclear how to establish even single recurrence for the corresponding systems
of measure preserving transformations. One would not therefore automatically expect it
to be easy to overcome infinite generation in our current setup either, but as it turns out,
certain algebraic properties of fields carry the day.

Let us elaborate. Suppose P is a finite set of polynomial mappings from a finite
dimensional vector space V to a vector space W over an infinite field F , and let U be
a measure preserving action of W on a probability space X. In an approach analogous
to that of [FK1], we reduce the general problem of multiple recurrence for P in X to the
situation where, for each ϕ ∈ P, the polynomial action U(ϕ) of V on X is either (relatively)
compact or (relatively) weakly mixing. To do so, we need to choose a maximal subgroup
in W which acts in a compact way on a nontrivial subspace L2(X̂) of L2(X), and then
replace X by X̂. However, if W is not finitely generated, such a subgroup does not have
to exist. We note however that the group 〈ϕ(V )〉 generated in W by the elements ϕ(v),
v ∈ V , is not arbitrary: if charF = 0, 〈ϕ(V )〉 is a vector subspace of W (Theorem 1.13);
if charF = p > 0, then 〈ϕ(V )〉 is, in our terminology, a p-subspace of W (Theorem 1.21
and section 1.25). We show that, like conventional subspaces of a finite dimensional vector
space, p-subspaces satisfy the ascending chain condition (Lemma 1.28), which solves the
problem.

A second issue that does not arise in [FK1] or [BL1] is that our multiple recurrence
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theorems are required to be uniform in the sense that they must hold along arbitrary
Følner sequences. A familiar instance of this phenomenon is the classical von Neumann
ergodic theorem, which can be given a “uniform” formulation: for any Følner sequence in
Z, in particular, for any sequence of intervals Φk = [Nk,Mk] withMk−Nk −→ ∞, and for

any unitary operator U on a Hilbert space H, lim
k→∞

1
|Φk|

∑Mk

n=Nk
Unf exists in the strong

topology for any f ∈ H, and equals the orthogonal projection of f onto the subspace of
U -invariant vectors. The combinatorial significance of the fact that our multiple recurrence
theorems hold along arbitrary Følner sequences is that it insures that the “good” parame-
ters of the sought-after configurations are more plentiful than would otherwise be known.
For example, one would like to know not only that for any set E ⊆ Qd with d∗(E) > 0,
any polynomial mapping P :Qd −→ Qc satisfying P (0) = 0 and any finite set S ⊂ Qd one
can find w ∈ Qc and r ∈ Q, r 6= 0, such that Sw,r = w+P (rS) =

{
w+P (rx), x ∈ S

}
⊂ E

(this follows from Theorem PSZ), but that there are many such images. In particular, one
would like to know that

{
r : there exists w such that Sw,r ⊂ E

}
is a syndetic (or relatively

dense) set – a fact which follows from the special case K = Q of Theorem 5.2 below. (A
subset S of a countable abelian group G is syndetic if finitely many shifts of it cover G.
See section 2.6 below.)

Uniformity is achieved by using (in place of a polynomial van der Waerden result, as
in [BL1]) a polynomial extension of the Hales-Jewett coloring theorem obtained in [BL2].
This method, which was originally inspired by a judicious and ingenious use of the (linear)
Hales-Jewett theorem in [FK2], was previously employed in both [BM] and [Le]. That we
are able to use the technique again here is a consequence of the fact that it is impervious
to infinite generation of the underlying group.

Finally, one more difficulty which demanded the introduction of new and the sharp-
ening of old techniques is that our goal is to establish a general result holding for fields
of both finite and infinite characteristic. In an attempt to streamline our proofs, we have
attempted, where possible, to unify both cases in a single line of argument. See section 3.8
for an example of this unification effort.

In most of the paper we deal with polynomial actions of finite dimensional vector
spaces over countable fields. In particular, we prove our polynomial multiple recurrence
theorem in this setup. We use then a combinatorial argument (see Chapter 5) to derive
from it a more general recurrence theorem pertaining to finitely generated modules over
countable integral domains. An advantage of this approach is that, unlike in the case
of general polynomial actions of modules over integral domains (unlike the most general
IP polynomial case as well), for polynomial actions of fields one has a polynomial ergodic
theorem (due to P. Larick in [La]) showing that the limits of ergodic averages in polynomial
von Neumann-type theorems do in fact turn out to be orthogonal projections. This makes
the “polynomial” situation more closely resemble the “linear” one and facilitates handling
of some delicate points in the proof. A modest extension (Theorem 3.10) of Larick’s
theorem is employed in the development of the structure theory we utilize in our proof of
Theorem 4.14, which is the main ergodic-theoretic result of this paper and which we now
state.

Theorem. Let V , W be finite dimensional vector spaces over F , let U be a measure
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preserving action of W on a probability measure space (X,B, µ) and let P be a finite family
of polynomials V −→ W with zero constant term. Then for any B ∈ B with µ(B) > 0
there exists c > 0 such that the set

{
u ∈ V : µ

(⋂
ϕ∈P U(ϕ(u))B

)
> c

}
is syndetic in V .

The structure of the paper is as follows. In Chapter 1 we investigate algebraic prop-
erties of polynomial mappings of finite dimensional vector spaces over infinite fields. In
particular we obtain results, crucial to our work in Chapter 3, pertaining to spans of the
images of such polynomial mappings and their derivatives. Chapter 2 is devoted to vari-
ous properties of densities in countable abelian groups, as well as to establishing a general
version of van der Corput’s difference lemma – a major tool which allows one to handle the
weakly mixing portion of the proof of our main theorem by making it possible to inductively
reduce the complexity of the families of polynomial expressions involved. In Chapter 3 the
algebraic apparatus developed in Chapter 1 and the van der Corput lemma are used to
establish general ergodic theorems for unitary actions of finite dimensional vector space on
Hilbert spaces and Hilbert bundles. (Actually, instead of dealing with Hilbert bundles we
choose an equivalent approach and work with Hilbert-like spaces whose inner products take
values in the space of integrable functions on a probability space.) In Chapter 4 we use
the previously-mentioned fact that our p-subspaces satisfy the ascending chain condition
to establish existence of primitive extensions. The polynomial Hales-Jewett theorem is
then combined with the knowledge gained in Chapter 3 (in the special case of polynomial
unitary actions originating in measure preserving actions of vector spaces), to establish our
main theorem. Finally in Chapter 5 we derive combinatorial corollaries of Theorem 4.14,
including the polynomial Szemerédi theorem for finite fields cited above.

Acknowledgment. We would like to thank an anonymous referee for many helpful com-
ments.

1. Polynomial mappings of vector spaces

Let F be an infinite field.

1.1. A monomial (over F , in d variables) is a mapping ψ:F d −→ F , d ∈ N, of the form
ψ(x1, . . . , xd) = xn1

1 . . . xnd

d with n1, . . . , nd ∈ Z+ (where Z+ = {0, 1, 2, . . .}). The formal
degree of ψ is defined by degψ = n1+ . . .+nd. A mapping ϕ:F d −→W , where d ∈ N and
W is a vector space over F , will be called a polynomial if it is representable as a linear
combination of monomials with vector coefficients: for x = (x1, . . . , xd) ∈ F d, ϕ(x) =
ψ1(x)a1 + . . . + ψl(x)al, where ψ1, . . . , ψl are monomials F d −→ F and a1, . . . , al ∈ W .
Under the assumption that ϕ is in reduced form, i.e. the ψj are distinct and the coefficients
aj are nonzero, the formal degree of ϕ is defined by degϕ = max{degψ1, . . . , degψl}.

1.2. Given a finite dimensional vector space V over F , we say that a mapping ϕ:V −→W
is a polynomial if it becomes a polynomial after introducing coordinates in V . Clearly, the
choice of coordinate system affects neither the polynomiality of ϕ nor its formal degree.

We are interested in the subgroup of W generated by the range ϕ(V ) of a polynomial
ϕ:V −→ W . We first discuss the properties of general “polynomial mappings” of abelian
groups.
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1.3. Let G and G′ be abelian groups, written additively. Given a mapping ϕ:G −→ G′,
and v ∈ G, we define the derivative of ϕ with step v, Dvϕ:G −→ G′, by Dvϕ(u) =
ϕ(u + v) − ϕ(u) − ϕ(v) + ϕ(0). (The “non-standard” terms −ϕ(v) + ϕ(0) are present in
order to ensure that Dvϕ(0) = 0, which simplifies our further computations.) ϕ is called
a polynomial mapping if there exists n ∈ N such that Dvn . . . Dv1ϕ is constant for any
v1, . . . , vn ∈ G. The minimal n with this property is called the degree of ϕ; in order to
avoid confusion with the formal degree defined above, we will denote it by Degϕ. The
reader will notice that we have reserved the term “degree” for a notion more customarily
applied to what we refer to as the “formal degree”. We do this because for our purposes
Deg is a more relevant notion than deg.

For a constant ϕ we put Degϕ = 0. If Degϕ ≤ 1 we say that ϕ is linear; it is clear
that ϕ is linear if and only if it is a sum of a homomorphism and a constant mapping.

1.4. The proof of the following lemma is straightforward.

Lemma. (i) If ϕ1, ϕ2:G −→ G′ are polynomial mappings then ϕ1 + ϕ2 is a polynomial
mapping with Deg(ϕ1 + ϕ2) ≤ max

{
Degϕ1,Degϕ2

}
.

(ii) If ϕ:G −→ G′ is a polynomial mapping and η:G′ −→ G′′ is a homomorphism, then
η ◦ ϕ is a polynomial mapping with Deg(η ◦ ϕ) ≤ Degϕ.

(iii) If ϕ:G −→ G′ is a polynomial mapping and η:G′′ −→ G is a homomorphism, then
ϕ ◦ η is a polynomial mapping with Deg(ϕ ◦ η) ≤ Degϕ.

(iv) If ϕj :G −→ Gj, j = 1, . . . , k, are polynomial mappings and η:G1 × . . . × Gk −→
G′ is a k-linear mapping, then η ◦ (ϕ1, . . . , ϕk) is a polynomial mapping with Deg

(
η ◦

(ϕ1, . . . , ϕk)
)
≤ Degϕ1 + . . .+Degϕk.

(All these are special cases of the following fact: the composition of polynomial mappings
is polynomial and Deg(ϕ1 ◦ ϕ2) ≤ (Degϕ1)(Degϕ2).)

1.5. We now return to conventional polynomials F d −→ W . A monomial ψ(x) =
xn1

1 . . . xnd

d , x = (x1, . . . , xd) ∈ F d, is a product of n1+ · · ·+nd linear mappings of the form
x 7→ xi. Hence, by Lemma 1.4(iv), ψ is a polynomial mapping with Degψ ≤ n1+ . . .+nd.

By Lemma 1.4(i), any polynomial ϕ = ψ1a1 + . . . + ψlal is a polynomial mapping
with Degϕ ≤ max{Degψ1, . . . ,Degψl}. We will see that when F has finite characteristic
Deg(ϕ) may not coincide with deg(ϕ).

1.6. Let us undertake exact computations. For ψ(x) = xn1

1 . . . xnd

d and y = (y1, . . . , yd) ∈
F d we have

Dyψ(x) =
∑

(m1,...,md)≤(n1,...,nd)
(m1,...,md) 6=(0,...,0)

(m1,...,md) 6=(n1,...,nd)

(
n1

m1

)
. . .

(
nd

md

)
xm1

1 yn1−m1

1 . . . xmd

d ynd−md

d ,

(1.1)

where we write (m1, . . . ,md) ≤ (n1, . . . , nd) if mi ≤ ni for all i = 1, . . . , d. If F has
zero characteristic, the coefficients of all the monomials in (1.1) are distinct monomials
in y with nonzero numerical coefficients. For any two distinct monomials ψ1 and ψ2, any
two equal monomials in Dyψ1 and Dyψ2 have, as their coefficients, distinct monomials
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in y. Therefore, for any polynomial ϕ = ψ1a1 + . . . + ψlal, where ψ1, . . . , ψl are distinct
monomials, the polynomial Dyϕ contains all the monomials occurring in the derivatives
Dyψ1, . . ., Dyψs with coefficients which are nonconstant polynomials in y. By induction
we may conclude that Degϕ = max

{
Degψ1, . . . ,Degψs

}
and that Deg(xn1

1 . . . xnd

d ) =
n1 + . . .+ nd, that is, Degϕ = degϕ.

1.7. If charF = p <∞, the situation is more complicated. The mappings x 7→ xp
k

, k ∈ Z+,
are homomorphisms and hence linear polynomials. Let us consider a monomial ψ:F −→ F ,
ψ(x) = xn. Let n = n0 + n1p + . . . + nlp

l with n0, n1, . . . , nl ∈ {0, 1, . . . , p − 1}, that is,

let (nl, . . . , n1, n0) be the base p expansion of n. Then xn = xn0(xp)n1 . . . (xp
l

)nl . For any

k = 0, . . . , l, Deg(xnk) ≤ nk and, since x 7→ xp
k

is a homomorphism, by Lemma 1.4(iii) we

have Deg
(
(xp

k

)nk
)
≤ nk. Let us denote n0+n1+. . .+nl byNp(n). Then by Lemma 1.4(iv),

Deg(xn) ≤ Np(n).
In order to show that actually Deg(xn) = Np(n), we use induction on Np(n). Let us

write

Dy(x
n) = (x+ y)n − xn − yn

= (x+ y)n0(xp + yp)n1 . . . (xp
l

+ yp
l

)nl − xn0(xp)n1 . . . (xp
l

)nl − yn0(yp)n1 . . . (yp
l

)nl

=
( n0∑
m0=0

(
n0

m0

)
xm0yn0−m0

)( n1∑
m1=0

(
n1

m1

)
xm1py(n1−m1)p

)
. . .

( nl∑
ml=0

(
nl

ml

)
xmlp

l

y(nl−ml)p
)

−xn0(xp)n1 . . . (xp
l

)nl − yn0(yp)n1 . . . (yp
l

)nl

=
∑

(m0,m1,...,ml)≤(n0,n1,...,nl)
(m0,m1,...,ml) 6=(0,...,0)

(m0,m1,...,ml) 6=(n0,n1,...,nl)

(
n0

m0

)(
n1

m1

)
. . .

(
nl

ml

)
xm0+m1p+...+mlp

l

y(n0−m0)+(n1−m1)p+...+(nl−ml)p
l

.

On the other hand, Dy(x
n) =

∑n−1
m=1

(
n
m

)
xmyn−m, so we may write

Dy(x
n) =

∑

m�n
m 6=0
m 6=n

(
n
m

)
xmyn−m,

where all the coefficients are nonzero, and where we write m � n if all the digits in the
p-adic expansion of m are less or equal to the corresponding digits of n. In particular,
Dy(x

n) has a summand of the form cxm, where Np(m) = Np(n) − 1. Hence Deg(xn) ≥
Deg(xm) + 1 = Np(m) + 1 = Np(n).

For a general monomial ψ(x) = xn1

1 . . . xnd

d we have

Dyψ(x) =
∑

(m1,...,md)�(n1,...,nd)
(m1,...,md) 6=(0,...,0)

(m1,...,md) 6=(n1,...,nd)

(
n1

m1

)
. . .

(
nd

md

)
xm1

1 yn1−m1

1 . . . xmd

d ynd−md

d ,

(1.2)

where all the coefficients are nonzero, and where we write (m1, . . . ,md) � (n1, . . . , nd) if
mi � ni for all i = 1, . . . , d. Arguing as before, we get Deg(xn1

1 . . . xnd

d ) = Np(n1) + . . . +
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Np(nd). As a corollary we obtain the fact that the only nontrivial linear monomials are

those of the form xp
k

i , and that a polynomial is linear if and only if it is a linear combination
of linear monomials.

1.8. Let ϕ:V −→ W be a polynomial, ϕ = ψ1a1 + . . . + ψlal, where ψ1, . . . , ψt are linear
monomials and ψt+1, . . . , ψl are non-linear. We will call the polynomial λ = ψ1a1 + . . .+
ψtat the linear part of ϕ. (One may check that λ does not depend on the choice of
coordinates in V .) We say that ϕ has trivial linear part if λ = 0. If λ is the linear part of
ϕ then Dvλ = 0 and Dv(ϕ− λ) = Dvϕ for any v ∈ V .

In the case ϕ(0) = 0 we will also say that ϕ has zero constant term.

1.9. Let us say that a monomial ψ:F d −→W is separable if ψ is not representable as the p-
power of another monomial: ψ 6= ψp

0 . In other words, a monomial ψ, ψ(x) = xn1

1 . . . xnd

d , is
separable if and only if not all of n1, . . . , nd are multiples of p. It is clear that any monomial

ψ is uniquely representable in the form ψ = ψpk

0 where k ∈ Z+ and ψ0 is a separable
monomial. It is also clear that any polynomial ϕ:F d −→ W is uniquely representable in
the form ϕ = η1 ◦ψ1 + . . .+ ηl ◦ψl, where ψ1, . . . , ψl are distinct separable monomials and

η1, . . . , ηl are homomorphisms F −→W : ηj(x) = xaj,0+x
paj,1+ . . .+x

pkj
aj,kj

. We adopt
this representation as canonical.

1.10. WhenW is a vector space over F and A is a subset ofW , we will denote by Span(A)
the subgroup of W generated by A: Span(A) =

{
±a1 ± . . .± ak : k ∈ N, a1, . . . , ak ∈ A

}
.

In contrast, we will denote the F -subspace ofW generated by A, namely Span
(
{xa : x ∈ F ,

a ∈ A}
)
, by SpanF (A). We will now investigate the group generated by the range of a

polynomial ϕ, Span
(
Ran(ϕ)

)
.

1.11. The following lemma is trivial.

Lemma. For any mapping ϕ:V −→ W and any v ∈ V one has Span
(
Ran(Dvϕ)

)
⊆

Span
(
Ran(ϕ)

)
.

1.12. Starting from this point we treat the cases charF = 0 and charF 6= 0 separately.
We begin with the case charF = 0.

Theorem. (i) Let charF = 0, let ψ1, . . . , ψc be nontrivial distinct monomials F d −→ F
and let ϕ = (ψ1, . . . , ψc). Then Span

(
Ran(ϕ)

)
= F c.

(ii) If, in addition, none of ψj , . . . , ψc, is linear, then there exist r ∈ N and a nonzero
polynomial Π: (F d)r −→ F such that if y1, . . . ,yr ∈ F d satisfy Π(y1, . . . ,yr) 6= 0, then
Span

(
Ran(Dy1

ϕ) ∪ . . . ∪ Ran(Dyr
ϕ)

)
= F c.

The case d = 1 of this theorem was obtained in [La].
The proof of Theorem 1.12 will be given in section 1.17; we first formulate some

corollaries of this theorem.

1.13. Theorem. Suppose charF = 0. Let ϕ be a polynomial F d −→ W with zero
constant term. Write ϕ = ψ1a1 + . . .+ ψlal, where ψ1, . . . , ψl are distinct monomials and
a1, . . . , al ∈W . Then Span

(
Ran(ϕ)

)
= SpanF {a1, . . . , al}.
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1.14. In particular,

Corollary. If λ is the linear part of ϕ, then Ran(λ) = Span
(
Ran(λ)

)
⊆ Span

(
Ran(ϕ)

)
.

1.15. Theorem. For any d, n ∈ N there exist r ∈ N and a nonzero polynomial Π: (F d)r −→
F such that for any y1, . . . ,yr ∈ F d with Π(y1, . . . ,yr) 6= 0 and any polynomial ϕ:F d −→
W of degree ≤ n one has Ran(λ) +

∑r
s=1 Span

(
Ran(Dyr

ϕ)
)
= Span

(
Ran(ϕ)

)
, where λ is

the linear part of ϕ.

Indeed, for any v ∈ V , Span
(
Ran(Dvϕ)

)
⊆ Span

(
Ran(ϕ)

)
, and Ran(λ) ⊆ Span

(
Ran(ϕ)

)

by Corollary 1.14. This implies the inclusion “⊆”. To get the opposite inclusion, we apply
Theorem 1.12(ii) to the (finite) set of all monomials of degree ≤ n in d variables. We omit
the details.

1.16. Example. Let ϕ:F 2 −→ F 3, ϕ(x1, x2) = (x21, x1x2, x
2
2). Then, for y = (y1, y2),

x = (x1, x2), Dyϕ(x) = (2y1x1, y2x1 + y1x2, 2y2x2). Clearly this homomorphism F 2 −→
F 3 cannot be surjective for any y ∈ F 2. Take any z = (z1, z2, z3) ∈ F 3 and consider the
equation Dy1

ϕ(x1) +Dy2
ϕ(x2) = z. In the coordinates y1 = (y1,1, y2,1), y2 = (y1,2, y2,2),

x1 = (x1,1, x2,1), x2 = (x1,2, x2,2) this is

{2y1,1x1,1 + 2y1,2x1,2 = z1
y2,1x1,1 + y1,2x2,1 + y2,2x1,2 + y1,2x2,2 = z2
2y2,1x2,1 + 2y2,2x2,2 = z3.

(1.3)

The system (1.3) is a corollary of





2y1,1x1,1 + 2y1,2x1,2 = z1
y2,1x1,1 + y2,2x1,2 = z2
y1,2x2,1 + y1,2x2,2 = 0
2y2,1x2,1 + 2y2,2x2,2 = z3,

that is, of



2y1,1 2y1,2
y2,1 y2,2 O
O

y1,1 y1,2
2y2,1 2y2,2







x1,1
x1,2
x2,1
x2,2


 =




z1
z2
0
z3


 .

So, if the determinant of this system Π(y1,y2) = 4(y1,1y2,2 − y2,1y1,2)
2 6= 0, the system

(1.3) is solvable for any z, so Ran(Dy1
ϕ) + Ran(Dy2

ϕ) = F 3. Since F is assumed to be
infinite, Π(y1,y2) 6= 0 for some y1,y2 ∈ F 2. Since Ran(Dyϕ) ⊆ Span

(
Ran(ϕ)

)
for any

y ∈ F 2, we obtain Span
(
Ran(ϕ)

)
= F 3.

9



1.17. Proof of Theorem 1.12. We prove Theorem 1.12 by induction on the maximum
degree of the monomials ψ1, . . . , ψc. In the case where all the ψj are linear the statement is
trivial, which gives the base of the induction. We start with the proof of (ii); assume that
none of the ψj are linear. Let λy, y ∈ F d, be the linear part of Dyϕ =

(
Dyψ1, . . . , Dyψc

)
:

λy(x) =
(∑d

i=1 ui,1(y)xi, . . . ,
∑d

i=1 ui,c(y)xi

)
, where the ui,j are monomials in y, and

Dyϕ− λy contains no linear monomials in x.

By the induction hypothesis (applied to Corollary 1.14) Ran(λy) ⊆ Span
(
Ran(Dyϕ)

)

for any y ∈ F d. Therefore it suffices to find r ∈ N and a polynomial Π: (F d)r −→ F such
that Π(y1, . . . ,yr) 6= 0 implies Ran(λy1

) + . . .+Ran(λyr
) = F c.

For each i = 1, . . . , d let ri be the number of nonzero monomials among the ui,j ,
j = 1, . . . , c, and let r = max{r1, . . . , rd}. For each j = 1, . . . , c choose i = ij such that
ui,j 6= 0.

Let (z1, . . . , zc) ∈ F c; it suffices to attain the consistency of the following system of
r1 + . . .+ rd linear equations in r1 + . . .+ rd variables xi,s, i = 1, . . . , d, s = 1, . . . , ri:

ri∑

s=1

ui,j(ys)xi,s = zi,j , i = 1, . . . , d, j = 1, . . . , c, s.t. ui,j 6= 0,

where zi,j = zj if i = ij and zi,j = 0 otherwise.

(1.4)

For, summing from 1 to d, then letting xs = (x1,s, . . . , xd,s) (where we use 0 for xi,s in the
event s > ri), one obtains

∑r
s=1 λys

(xs) = (z1, . . . , zc).

The matrix of the system (1.4) is




A1

OA2

. . .O Ad


 , Ai =



ui,j1,k1

(y1) . . . ui,j1,k1
(yri)

...
...

ui,jri ,kri
(y1) . . . ui,jri ,kri

(yri)


 , i = 1, . . . , d, (1.5)

where ui,j1,k1
, . . . , ui,jri ,kri

is the list of all nonzero monomials among the ui,j for j =
1, . . . , c. Since ψ1, . . . , ψc are all distinct, for any i = 1, . . . , d the nonzero monomials ui,j ,
j = 1, . . . , c, are pairwise distinct (recall, ui,j is the coefficient of xi, in y, of Dyψj).

As there can therefore be no cancellation of terms in its computation, the determinant
Π of the matrix (1.5) is a nonzero polynomial in the variables ys, s = 1, . . . , r. Thus if
Π(y1, . . . ,yr) 6= 0, then for any z = (z1, . . . , zc) ∈ F c the system (1.4) has a solution
(xi,s, i = 1, . . . , d, s = 1, . . . , ri).

We now deduce part (i) from part (ii). Let ϕ = (ψ1, . . . , ψc), where ψ1, . . . , ψl are
distinct linear monomials and ψl+1, . . . , ψc are distinct non-linear monomials. By (ii),∑

y∈Fd Span
(
Ran(Dyϕ)

)
= {0}l×F c−l. Since Span

(
Ran(Dyϕ)

)
⊆ Span

(
Ran(ϕ)

)
for any

y ∈ F d, we have {0}l × F c−l ⊆ Span
(
Ran(ϕ)

)
. Since, plainly, Ran(ψ1, . . . , ψl) = F l, we

are done.
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1.18. We now turn to the case charF = p < ∞. For x = (x1, . . . , xd) ∈ F d, let xp =
(xp1, . . . , x

p
d). If V is a vector space over F , the operation v 7→ vp is not well defined on V .

Hence when we write vp for v ∈ V we assume that some coordinate system in V is fixed.

1.19. The proof of the following theorem will be given in section 1.24.

Theorem. (i) Suppose charF = p < ∞. Let ψ1, . . . , ψc be pairwise distinct nontrivial
separable monomials F d −→ F and let ϕ:F d −→ F c, ϕ(x) = (ψ1(x), . . . , ψc(x)). Then
Span

(
Ran(ϕ)

)
= F c.

(ii) Let, in addition, none of ψ1, . . . , ψc be linear, let n = max{degψ1, . . . , degψc} and let
m ≥ [logp n]. Then there exist r ∈ N and a nonzero polynomial Π: (F d)r −→ F such that if

y1, . . . ,yr ∈ F d satisfy Π(y1, . . . ,yr) 6= 0, then Span
(
Ran(D

y
pm

1

ϕ)∪ . . .∪Ran(D
y
pm

r
ϕ)

)
=

F c.

The case d = 1 of this theorem was obtained in [La].

1.20. Example. Let ϕ:F −→ F , ϕ(x) = xp+1. Then for y ∈ F , Dyϕ(x) = yxp + ypx,
which is a linear mapping that is not surjective in general. Take any z ∈ F and consider
the equation Dyp

1
ϕ(x1) +Dyp

2
ϕ(x2) = z, that is,

yp1x
p
1 + yp

2

1x1 + yp2x
p
2 + yp

2

2x2 = z. (1.6)

Equation (1.6) is a corollary of the system of equations

{
yp1x

p
1 + yp2x

p
2 = 0

yp
2

1x1 + yp
2

2x2 = z,

which is equivalent to {
y1x1 + y2x2 = 0

yp
2

1x1 + yp
2

2x2 = z.

The determinant of this system of linear equations in x1, x2 is Π(y1, y2) = y1y
p2

2 − yp
2

1 y2.
Hence, for y1, y2 satisfying Π(y1, y2) 6= 0, the equation (1.6) is solvable for any z ∈ F , so
Ran(Dyp

1
ϕ) + Ran(Dyp

2
ϕ) = F . Since F is assumed to be infinite, Π(y1, y2) 6= 0 for some

y1, y2 ∈ F , which implies Span
({
xp+1 : x ∈ F

})
= F .

1.21. Let ϕ be a polynomial F d −→W with zero constant term. Represent ϕ in the form
ϕ = η1 ◦ ψ1 + . . . + ηl ◦ ψl where ψ1, . . . , ψl are separable monomials and η1, . . . , ηl are
homomorphisms F −→ W . Define a polynomial ψ:F d −→ F l by ψ = (ψ1, . . . , ψl) and
a homomorphism π:F l −→ W by π(z1, . . . , zl) = η1(z1) + . . . + ηl(zl). Then ϕ = π ◦ ψ,
and Theorem 1.19(i) implies Span

(
Ran(ϕ)

)
= π

(
Span

(
Ran(ψ)

))
= π(F l) = Ran(π). We

therefore have

Theorem. Span
(
Ran(ϕ)

)
=

∑l
j=1 Ran(ηj).

11



Let us remark that, unlike in the case charF = 0, Span
(
Ran(ϕ)

)
need not be an F -

subspace of W , since homomorphisms η:F −→ F , η(x) = a0x+ a1x
p + . . .+ amx

pm

need
not be surjective. If F is an algebraic field (that is, an algebraic extension of Zp), the range
of such η is a subgroup of finite index of the additive group of F ; if F is transcendental
over Zp then the range of η may have infinite index in F .

1.22. Suppose further that ψ1, . . . , ψt are linear monomials, while ψt+1, . . . , ψl are non-
linear. Then λ =

∑t
i=j ηj ◦ ψj is the linear part of ϕ, and Ran(λ) = Span

(
Ran(λ)

)
=∑t

j=1 Ran(ηj). In particular, we have

Corollary. Ran(λ) ⊆ Span
(
Ran(ϕ)

)
.

1.23. Under the assumptions of 1.21 and 1.22, let degϕ = n, m ≥ [logp n] and let Π be
the polynomial arising in Theorem 1.19 applied to the set of all separable monomials of
formal degree ≤ n. Let a polynomial ψ:F d −→ F l−t be defined by ψ = (ψt+1, . . . , ψr),
and define a homomorphism π:F l−t −→ W by π(zt+1, . . . , zl) = ηt+1(z1) + . . . + ηl(zl).
Then for any y1, . . . ,yr ∈ F d with Π(y1, . . . ,yr) 6= 0, Theorem 1.19(ii) gives

r∑

s=1

Span
(
Ran(D

y
pm

s
ϕ)

)
=

r∑

s=1

Span
(
Ran

( l∑

j=t+1

D
y
pm

s
(ηj ◦ ψj)

))

=
r∑

s=1

Span
(
Ran

( l∑

j=t+1

ηj ◦Dy
pm

s
(ψj)

))
=

r∑

s=1

Span
(
Ran(π ◦D

y
pm

s
ψ)

)

= π
( r∑

s=1

Span
(
Ran(D

y
pm

s
ψ)

))
= π(F l−t) =

l∑

j=t+1

Ran(ηj).

Combining this with the results from 1.21 and 1.22, we obtain

Theorem. For any d,m ∈ N there exist r ∈ N and a nonzero polynomial Π: (F d)r −→ F
such that for any y1, . . . ,yr ∈ F d satisfying Π(y1, . . . ,yr) 6= 0 and any polynomial

ϕ:F d −→ W of formal degree < pm+1 one has Ran(λ) +
r∑

s=1
Span

(
Ran(D

y
pm

s
ϕ)

)
=

Span
(
Ran(ϕ)

)
, where λ is the linear part of ϕ.

1.24. Proof of Theorem 1.19. We prove Theorem 1.19 by induction on the maximum
degree of the monomials ψ1, . . . , ψc. In the case where all the ψj are linear the statement
is trivial. We start with the proof of (ii); assume that no ψj is linear. Let λy, y ∈ F d,

be the linear part of Dyϕ =
(
Dyψ1, . . . , Dyψc

)
: λy(x) =

(∑d
i=1

∑m
k=0 ui,1,k(y)x

pk

i , . . . ,
∑d

i=1

∑m
k=0 ui,c,k(y)x

pk

i

)
, where m ≥ [logp n], ui,j,k are monomials in y, and Dyϕ −

λy contains no linear monomials in x. Since by the induction hypothesis (applied to
Corollary 1.22) Ran(λy) ⊆ Span

(
Ran(Dyϕ)

)
, y ∈ F d, it suffices to show that there are

r ∈ N and a polynomial Π: (F d)r −→ F such that Π(y1, . . . ,yr) 6= 0 implies Ran(λ
y
pm

1

) +

. . .+Ran(λ
y
pm

r
) = F c.
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Since ψ1, . . . , ψc are distinct, for any i = 1, . . . , d the nonzero monomials ui,j,k, j =
1, . . . , c, k = 0, . . . ,m, are pairwise distinct. For each i = 1, . . . , d let ri be the number of
nonzero monomials among ui,j,k, j = 1, . . . , c, k = 0, . . . ,m, and let r = max{r1, . . . , rd}.
For each j = 1, . . . , c, let ψj =

∏d
i=1 x

ni,j

i . Since ψj is separable, there is i = ij such that
ni,j is not divisible by p; we have ui,j,k 6= 0 for this i. Let (z1, . . . , zc) ∈ F c; consider the
system of equations

ri∑

s=1

ui,j,k(y
pm

s )xp
k

i,s = zi,j,k, i = 1, . . . , d, j = 1, . . . , c, k = 0, . . . ,m, s.t. ui,j,k 6= 0,

where zi,j,k = zj if k = 0 and i = ij , and zi,j,k = 0 otherwise.

Extracting the pk-th root from the equations corresponding to k > 0 (keeping in mind
that zi,j,k = 0 in this case), we get

ri∑

s=1

ui,j,k(y
pm−k

s )xi,s = zi,j,k, i = 1, . . . , d, j = 1, . . . , c, k = 0, . . . ,m, ui,j,k 6= 0. (1.7)

The matrix of this system has form




A1

OA2

. . .O Ad


 , Ai =




ui,j1,k1
(ypm−k1

1 ) . . . ui,j1,k1
(ypm−k1

ri )
...

...
ui,jri ,kri

(ypm−kri

1 ) . . . ui,jri ,kri
(ypm−kri

ri )


 , i = 1, . . . , d,

(1.8)
where ui,j1,k1

, . . . , ui,jri ,kri
is the list of all nonzero monomials among ui,j,k, j = 1, . . . , c,

k = 0, . . . ,m. For any i, (ja, ka) 6= (jb, kb) implies ui,ja,ka
(ypm−ka

) 6= ui,jb,kb
(ypm−kb ),

except for the case when both are zero. Indeed, when both are non-zero, direct computa-

tion yields ui,ja,kb
(ypm−ka

) = y
(ni,ja−pka )pm−ka

i

∏d
i 6=t=1 y

nt,jap
m−ka

t and ui,jb,kb
(ypm−kb ) =

y
(ni,jb

−pkb )pm−kb

i

∏d
i 6=t=1 y

nt,jb
pm−kb

t . If these are equal then, equating the exponents of

each yt, 1 ≤ t ≤ d, yields pkbnt,ja = pkant,jb for all t, 1 ≤ t ≤ d (for t 6= i this is immediate,
while for t = i some minor computation is necessary). Since ψja and ψjb are distinct
monomials, we cannot have ka = kb. But if, without loss of generality, ka > kb, then p
divides nt,ja , 1 ≤ t ≤ d, a contradiction.

This implies that the determinant Π of the matrix (1.8) is a nonzero polynomial in ys,
s = 1, . . . , r. Thus if Π(y1, . . . ,yr) 6= 0, then for any z = (z1, . . . , zc) ∈ F c the equation
(1.7) has a solution (xi,s, i = 1, . . . , d, s = 1, . . . , ri). For i = 1, . . . , d put xi,s = 0 if
ri < s ≤ r and let xs = (x1,s, . . . , xd,s), s = 1, . . . , r. Then

∑r
s=1 λypm

s
(xs) = z and hence∑r

s=1 Ran(λypm

s
) = F c.

Now we may deduce part (i) of Theorem 1.19 from part (ii). Let ϕ = (ψ1, . . . , ψc),
where ψ1, . . . , ψc are distinct nontrivial separable monomials. Assume that ψ1, . . . , ψl

are linear while ψl+1, . . . , ψc are nonlinear. By (ii),
∑

y∈Fd Span
(
Ran(Dyϕ)

)
= {0}l ×

F c−l. Since Span
(
Ran(Dyϕ)

)
⊆ Span

(
Ran(ϕ)

)
for any y ∈ F d, we have {0}l × F c−l ⊆

Span
(
Ran(ϕ)

)
. Since Ran(ψ1, . . . , ψl) = F l, we are done.
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1.25. We will continue to assume that charF = p <∞ for the remainder of this chapter.
Theorem 1.21 leads us to introduce the following notion. Let us denote by Fk, k = 0, 1, . . .,

the subfield
{
xp

k

: x ∈ F
}
of F . Let W be a vector space over F , let A be a subset of W

and let m, l ∈ N. We say that a subgroup L of W is a (p,A,m)-space of dimension ≤ l if
L is representable in the form

L =
{ l∑

i=1

m∑

k=0

xp
k

i ai,k : x1, . . . , xl ∈ F
}

with ai,k ∈ SpanFk
(A), i = 1, . . . , l, k = 0, . . . ,m.

1.26. Let ϕ:V −→ W be a polynomial with zero constant term. Write ϕ = η1 ◦ ψ1 +
. . . + ηl ◦ ψl, where ψi are separable monomials and ηi are homomorphisms F −→ W ,
ηi(x) = ai,0x+xpai,1 + . . .+xp

mi
ai,mi

, i = 1, . . . , l. Assume that for every i = 1, . . . , l and
k = 0, . . . ,mi one has ai,k ∈ SpanFk

(A). Then by Theorem 1.21,

Span
(
Ran(ϕ)

)
=

l∑

i=1

Ran(ηi) =
l∑

i=1

{ mi∑

k=0

xp
k

ai,k : x ∈ F
}

=
{ l∑

i=1

mi∑

k=0

xp
k

i ai,k : x1, . . . , xl ∈ F
}
.

That is, Span
(
Ran(ϕ)

)
is a (p,A,m)-space for any m ≥ max{m1, . . . ,ml}.

Remark. The “monomials” and the “coefficients” of a polynomial V −→ W are only
defined modulo a coordinate system in V . When we discuss them, we assume that some
coordinate system in V has been chosen.

1.27. Let Λ = Λ(A,m) be the set of all (p,A,m)-spaces. We may interpret Λ in the
following way. Let Vk = SpanFk

(A), k = 0, . . . ,m, and let V = V0 ⊕ V1 ⊕ . . . ⊕ Vm. V
is an F -vector space with scalar multiplication x(b0, b1, . . . , bm) = (xb0, x

pb1, . . . , x
pm

bm),
x ∈ F , (b0, b1, . . . , bm) ∈ V. Define σ:V −→ W by σ(b0, . . . , bm) = b0 + . . . + bm. Then
Λ =

{
σ(L) : L is a subspace of V

}
.

1.28. If A is a finite set, then V is a finite dimensional space. This implies that

Lemma. For a finite set A ⊂ W and m ∈ N, Λ = Λ(A,m) satisfies the ascending chain
condition.

Proof. Let L1 ⊆ L2 ⊆ . . . be an ascending chain of (p,A,m) spaces. For n ∈ N, let Ln be
a subspace of V such that σ(Ln) = Ln and let Mn = L1+ . . .+Ln. Then M1 ⊆ M2 ⊆ . . .
is an ascending chain of subspaces of a finite dimensional space V and hence, it stabilizes:
Mm = Mm+1 = . . . for some m. Since σ(Mn) = Ln for all n, we have Lm = Lm+1 = . . ..

14



1.29. We will also need the following proposition.

Proposition. Let ϕ be a polynomial V −→W of formal degree < pm+1 with trivial linear
part and let L be an additive subgroup of W . Assume that there exists u ∈ V such that
Ran(Dupmϕ) 6⊆ L. Then there exists a nonzero polynomial R:V −→ F such that for any
v ∈ V satisfying R(v) 6= 0 one has Ran(Dvpmϕ) 6⊆ L.

Informally, this means that if ϕ has no linear part and Ran(Dupm ) 6⊆ L, then Ran(Dvpmϕ)
6⊆ L for almost all v ∈ V .

Proof. We identify V with F d for some d and let Π:V r −→ F be the polynomial corre-
sponding to d and m in Theorem 1.23. Let R1 be a nonzero polynomial V −→ F such
that for any w with R1(w) 6= 0, Π(w, v2, . . . , vr) is a nonzero polynomial in the variables
v2, . . . , vr. If Ran(Dwpmϕ) 6⊆ L for all w with R1(w) 6= 0, we are done. Otherwise, there is
w1 ∈ V such that Ran(D

wpm

1

ϕ) ⊆ L and Π(w1, v2, . . . , vr) is a nonzero polynomial. Then

let R2 be a polynomial V −→ F such that for any w with R2(w) 6= 0, Π(w1, w, v3, . . . , vr)
is a nonzero polynomial in the variables v3, . . . , vr. If Ran(Dwpmϕ) 6⊆ L for all w with
R2(w) 6= 0, we are done. Otherwise, find w2 ∈ V such that Ran(D

wpm

2

ϕ) ⊆ L and

Π(w1, w2, v3, . . . , vr) is a nonzero polynomial. And so on. If this process terminates at
a step k ≤ r, then we are done. Otherwise we have obtained w1, . . . , wr ∈ V such that
Π(w1, . . . , wr) 6= 0 and Ran(D

wpm

1

ϕ), . . . ,Ran(D
wpm

r
ϕ) ⊆ L. By Theorem 1.23, this im-

plies that Ranϕ ⊆ L, which contradicts our assumption.

2. Densities and a generalized van der Corput lemma

In this chapter we introduce some technical notions and notation and obtain some facts
that will be needed in the sequel.

Throughout this chapter G is a countable abelian group, written additively.

2.1. If {xu}u∈G is a set of elements of a topological group indexed by the elements of G, and
{Φn}∞n=1 is a Følner sequence in G, then we write C-lim

u∈G
xu = x for lim

n→∞

1
|Φn|

∑
u∈Φn

xu =

x. If the xu are real numbers, then we write C-limsup
u∈G

xu = x for lim sup
n→∞

1
|Φn|

∑
u∈Φn

xu =

x. Because this notion depends on the averaging Følner sequence, we will implicitly assume
such a sequence to be fixed throughout any given discussion, and assertions made will be
assumed to be valid for any such Følner sequence. In particular, multiple C-lim expres-
sions in the same discussion are assumed, unless otherwise stated, to be taken along the
same averaging Følner sequence. A similar convention will be held for the D-lim operator
discussed below.

2.2. For S ⊆ G, we write d(S) = C-limsup
u∈G

1S(u) when a given Følner sequence is under-

stood, and d∗(S) = sup{d(S)}, where the supremum is taken over all Følner sequences
in G. d(S) is called the upper density of S with respect to the given Følner sequence,
d∗(S) is called the upper Banach density of S. Analogously, the lower density d(S) of
S is defined as C-liminf

u∈G
1S(u) and the lower Banach density d∗(S) of S is inf{d(S)}. If
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d(S) = d(S) = d we say that S has density d (with respect to the chosen Følner sequence);
if d∗(S) = d∗(S) = d we say that S has Banach density d.

2.3. We write D-lim
u∈G

xu = x if for any neighborhood K of x the set
{
u ∈ G : xu ∈ K

}

has density 1. If xu are reals we write D-limsup
u∈G

xu for the infimum of the set of x ∈ R for

which the set
{
u : xu < x

}
has density 1.

2.4. If some property P (u) holds for all u ∈ S, where S is a subset of Banach density 1
in G, we will say that P holds for almost all elements of G. We leave the proof of the
following lemma to the reader.

Lemma. If V is a vector space and ϕ is a nonzero polynomial on V , then ϕ(u) 6= 0 for
almost all u ∈ V .

2.5. Remark. Suppose that G∗ is a subgroup of G and let u 7→ u∗ be a homomorphism of
G onto G∗. Then sets having Banach density 1 in G map onto sets having Banach density
1 in G∗. Hence, the statement “P (u∗) holds for almost all u ∈ G” implies the statement
“P (u∗) holds for almost all u∗ ∈ G∗.” We will repeatedly use this fact without mentioning
it.

2.6. A subset S of G is syndetic if finitely many translates of S cover G; that is, if there
exist u1, . . . , uk ∈ G such that

⋃k
i=1(ui + S) = G. A set T ⊆ G is thick if T ∩ S 6= ∅ for

every syndetic S.

2.7. The following lemma is routine.

Lemma. Let S, T ⊆ G.

(i) d, d, d∗ and d∗ are shift invariant: for any u ∈ G, d(S + u) = d(S), etc.

(ii) d(S ∩ T ) ≥ d(S) + d(T )− 1 and d∗(S ∩ T ) ≥ d∗(S) + d∗(T )− 1;

(iii) If ui ∈ G, 1 ≤ i ≤ k, and d
(
(ui + S) ∩ (uj + S)

)
= 0 for 1 ≤ i 6= j ≤ k, then

d
(⋃k

i=1(ui + S)
)
= kd(S), and similarly for d∗.

(iv) S is syndetic if and only if G \ S fails to be thick if and only if d∗(S) > 0.

(v) T is thick if and only if G \ T fails to be syndetic if and only if d∗(T ) = 1.

(vi) If T is thick and S has Banach density 1, then T ∩ S is thick.

(vii) If T is thick then for any u1, . . . , uk ∈ G the intersection
⋂k

i=1(ui + T ) is also thick.

(viii) If T is thick then T contains a ∆-set. That is, there exists a sequence {ui}∞i=1 in G
such that

{
uj − ui : 1 ≤ i < j

}
⊆ T .

(ix) If d(S) > 0 and G∗ is a subgroup of G, then S∗ =
{
u ∈ G∗ : d

(
(S + u) ∩ S

)
> 0

}
is

syndetic in G∗.
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Proof.We prove only (ix). Suppose not. Then by (iv), G∗\S∗ =
{
u ∈ G∗ : d

(
(S + u) ∩ S

)

= 0
}
is thick and hence by (viii) there exists a sequence {ui}∞i=1 in G∗ such that uj − ui ∈

G∗ \ S∗, 1 ≤ i < j. It follows from (i) that for i 6= j, d
(
(ui + S) ∩ (uj + S)

)
= 0, so

for all k we have by (iii) that d
(⋃k

i=1(ui + S)
)
= kd(S). Taking k > 1/d(S) yields a

contradiction.

2.8. For M ⊆ G we will denote by FS(M) the set of finite sums of distinct elements of M ,
that is, FS(M) =

{∑
v∈α v : α ⊆M, 0 < |α| <∞

}
.

Lemma. Suppose T ⊆ G is thick. Let d ∈ N and suppose S is a syndetic subset of Gd.
Then there exists v = (v1, . . . , vd) ∈ S such that FS

(
{v1, . . . , vd}

)
⊂ T .

Proof. Initially we shall omit the requirement (v1, . . . , vd) ∈ S. We use induction on
d. Suppose v1, . . . , vd−1 ∈ V have been chosen so that FS

(
{v1, . . . , vd−1}

)
⊂ T . Let

T ′ = T ∩⋂
v∈FS({v1,...,vd−1})

(T − v). Then, by Lemma 2.7(vii), T ′ is nonempty, and letting

vd ∈ T ′ one gets FS
(
{v1, . . . , vd}

)
⊂ T .

Now we show that in fact we may require (v1, . . . , vd) ∈ S. Since S is syndetic, for

some (u1,1, . . . , u1,d), . . . , (uk,1, . . . , uk,d) ∈ V d one has
⋃k

i=1

(
(ui,1, . . . , ui,d) + S

)
= V d.

Put B =
⋃k

i=1 FS
(
{ui,1, . . . , ui,d}

)
. The set T ′′ =

⋂
u∈B(u + T ) is thick, so by our prior

argument, there exist w1, . . . , wd ∈ V with FS
(
{w1, . . . , wd}

)
⊂ T ′′.

Choose i with (v1, . . . , vd) = (w1, . . . , wd)−(ui,1, . . . , ui,d) ∈ S. Then for any nonempty
α ⊆ {1, . . . , d} one has ∑

j∈α

vj =
∑

j∈α

wj −
∑

j∈α

ui,j = w − u,

where w ∈ T ′′ and u ∈ B. Hence,
∑

j∈α vj ∈ T .

2.9. We will also need a van der Corput-type lemma:

Lemma. Let {fu}u∈G be a bounded set of vectors in a Hilbert space indexed by the elements
of G. Fix a Følner sequence {Φn}n∈N and assume that there exists an infinite set H ⊆ G
such that for all nonzero v ∈ H −H, C-limsup

u∈G
〈fu+v, fu〉 = 0. Then C-lim

u∈G
fu = 0 in the

strong topology. In particular, if G∗ is an infinite subgroup of G and C-lim
u∈G

〈fu+v, fu〉 = 0

for almost all v ∈ G∗, then C-lim
u∈G

fu = 0.

Proof. Without loss of generality, we assume that ‖fu‖ < 1 for all u ∈ G. Let ε > 0 be
arbitrary. Pick a finite set K ⊂ H with |K| > 1

ε . For n ∈ N,

1

|Φn|
∑

u∈Φn

fu =
1

|Φn|
∑

u∈Φn

( 1

|K|
∑

v∈K

fu+v

)
+ δn = σn + δn,

where ‖δn‖ → 0 as n→ ∞. Now

‖σn‖2 ≤ 1

|Φn|
∑

u∈Φn

∥∥∥
1

|K|
∑

v∈K

fu+v

∥∥∥
2

=
1

|Φn|
∑

u∈Φn

1

|K|2
∑

v1,v2∈K

〈fu+v1 , fu+v2〉.
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But for fixed v1, v2 ∈ K, with v1 6= v2,

lim sup
n→∞

1

|Φn|
∑

u∈Φn

〈fu+v1 , fu+v2〉 = lim sup
n→∞

1

|Φn|
∑

u∈Φn

〈fu, fu+v〉 = 0,

where we have substituted v = v2 − v1 ∈ K −K.

It follows that for n large enough

‖σn‖2 ≤ 1

|Φn|
∑

u∈Φn

1

|K|2
∑

v1,v2∈K
v1 6=v2

〈fu+v1 , fu+v2〉+
1

|Φn|
∑

u∈Φn

1

|K|2
∑

v∈K

‖fu+v‖2

< ε+
1

|K| < 2ε.

The last assertion follows from Lemma 2.7(viii).

2.10. The following is a version of Lemma 2.9 for D-limits:

Lemma. Let {fu}u∈G be a bounded set of vectors of a Hilbert space H indexed by
the elements of G. Assume that there exists an infinite subgroup G∗ of G such that
D-lim
v∈G∗

D-limsup
u∈G

〈fu+v, fu〉 = 0. Then D-lim
u∈G

〈fu, g〉 = 0 for all g ∈ H. In particular, if

D-lim
u∈G

〈fu+v, fu〉 = 0 for almost all v ∈ G∗, then D-lim
u∈G

〈fu, g〉 = 0 for all g ∈ H.

Note that there are several D-lim expressions in this lemma. Most are taken with respect
to the same Følner sequence in G, while the first one is with respect to a Følner sequence
in G∗. This should cause minimal confusion, as one can see from the indexing set whether
one is dealing with G or G∗.

Proof. This proof is essentially due to Furstenberg (cf. [F2], Lemma 4.9). Suppose not.
Then there exist ε > 0 and g ∈ H such that S =

{
u ∈ G : |〈fu, g〉| > ε} satisfies d(S) > 0.

Without loss of generality we may assume that ‖g‖ = 1 and that ‖fu‖ ≤ 1, u ∈ G. Take
δ < ε2 and put Q =

{
v ∈ G∗ : D-limsup

u∈G
〈fu+v, fu〉 < δ

}
; Q has density 1 in G∗.

We claim that there exist a sequence v1, v2, . . . ∈ G∗ and a nested sequence of sets
S ⊇ S1 ⊇ S2 ⊇ . . . such that

(a) d(Sk) > 0 for all k ∈ N;

(b) vj − vi ∈ Q for all 1 ≤ i < j;

(c) for any k ∈ N, 1 ≤ i < j ≤ k and u ∈ Sk, 〈fu+vi , fu+vj 〉 < δ;

(d) for any k ∈ N, u ∈ Sk and 1 ≤ i ≤ k, u+ vi ∈ S.

To prove the claim, we start by choosing an arbitrary v1 from S∗
1 =

{
v ∈ G∗ :

d
(
(S1 + v) ∩ S1

)
> 0

}
(this set is nonempty by Lemma 2.7(ix)) and put S1 = (S−v1)∩S.

Clearly, (a) – (d) are satisfied. Having chosen v1, . . . , vk and Sk, define S
∗
k =

{
v ∈ G∗ :

d
(
(Sk + v) ∩ Sk

)
> 0

}
and choose vk+1 to be an element of S∗

k ∩ ⋂k
i=1(Q + vi). (This

intersection has positive upper density by Lemma 2.7(i) and (ii) because Q has density 1
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and S∗
k has positive lower density in G∗ by (ix) and (iv).) We then have vk+1 − vi ∈ Q for

1 ≤ i ≤ k. Next let

Sk+1 = (Sk − vk+1) ∩ Sk ∩
( k⋂

i=1

{
t ∈ G : 〈ft+vk+1−vi , ft〉 < δ

}
− vi

)
.

This set has positive upper density because vk+1 ∈ S∗
k and all of the sets in the final

intersection have upper density 1. One now sees that for u ∈ Sk+1 and 1 ≤ i < k + 1,
〈fu+vi , fu+vk+1

〉 < δ. Moreover, for every u ∈ Sk+1 one has u + vk+1 ∈ Sk ⊆ S. This
establishes the claim.

Let k be large enough that k2ε2 > k(k − 1)δ + k. Let u ∈ Sk and put ui = u + vi,
i = 1, . . . , k. Then 〈fui

, g〉 > ε, i = 1, . . . , k, and 〈fui
, fuj

〉 < δ, i, j = 1, . . . , k, i 6= j. For
i = 1, . . . , k write fui

= cig + fi, where 〈fi, g〉 = 0 and ci ≥ ε. Then

∥∥
k∑

i=1

fui

∥∥2 =
∥∥

k∑

i=1

cig
∥∥2 +

∥∥
k∑

i=1

fi
∥∥2 ≥ k2ε2.

On the other hand,

∥∥
k∑

i=1

fui

∥∥2 = 2
∑

1≤i<j≤k

〈fui
, fuj

〉+
k∑

i=1

‖fui
‖2 ≤ k(k − 1)δ + k.

This is a contradiction.

3. Unitary actions

In this chapter, F is a countable field, while V and W are finite dimensional vector spaces
over F .

3.1. Given a unitary action of W on a Hilbert space H and a polynomial ϕ:V −→W , we
call the mapping U(ϕ) = U ◦ ϕ a polynomial unitary action of V on H.

3.2. Remark. If we are given several commuting actions U1, . . . , Uk of vector spaces
W1, . . . ,Wk on a Hilbert space H, and polynomials ϕi:V −→ Wi, i = 1, . . . , k, then
the polynomial actions U1(ϕ1), . . . , Uk(ϕk) can also be obtained as a composition of the
single action U = U1 × . . . × Uk of W1 × . . . ×Wk and the polynomials (ϕ1, 0, . . . , 0), . . . ,
(0, 0, . . . , ϕk):V −→ W1 × . . . × Wk. Therefore, when dealing with several commuting
polynomial actions of V , we may and will always assume that they are induced by several
polynomials V −→W and a single unitary action of W .
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3.3. Given a unitary action U of an abelian group G on a Hilbert space H, we say that a
vector f ∈ H is U -invariant if U(v)f = f for all v ∈ G, and that f is U -compact , or that
U is compact on f , if the set U(G)f =

{
U(v)f : v ∈ G

}
is precompact (with respect to the

strong topology). We say that U is ergodic on H if the set of nonzero U -invariant vectors
in H is empty, and that U is compact on H if U is compact on all f ∈ H. We say that U is
weakly mixing on H if the induced action ofW on H⊗H, U(v)(f⊗g) =

(
U(v)f

)
⊗
(
U(v)g

)
,

is ergodic.

3.4. Let U be a unitary action of a (countable) abelian group G on a Hilbert space H.
The following three facts are well known.

Theorem. For any f ∈ H one has (along any Følner sequence) C-lim
u∈G

U(u)f = Pf , where

P is the orthogonal projection of H onto the space of U -invariant vectors.

3.5. Theorem. Let K be the space consisting of U -invariant vectors in H ⊗ H and
let f ∈ H. Then f ⊗ f ⊥ K iff f ⊗ g ⊥ K for all g ∈ H iff D-lim

u∈G

〈
U(u)f, f

〉
= 0

iff D-lim
u∈G

〈
U(u)f, g

〉
= 0 for all g ∈ H. In particular, U is weakly mixing on H iff

D-lim
u∈G

〈
U(u)f, g

〉
= 0 for all f, g ∈ H.

3.6. Define
Hc(U) =

{
f ∈ H : U is compact on f

}
and

Hwm(U) =
{
f ∈ H : D-lim

u∈G
〈U(u)f, g〉 = 0 for all g ∈ H

}
.

Theorem. H = Hc(U)⊕Hwm(U).

3.7. Our next goal is to show that the theory of compactness/weak mixing for “linear”
actions may be transferred without appreciable changes to the case of polynomial actions
of finite dimensional vector spaces.

Given a unitary action U of W on a Hilbert space H and a mapping ϕ:V −→W , we
say that a vector f ∈ H is U(ϕ)-invariant if U(ϕ(u))f = f for all u ∈ V , and that f is
U(ϕ)-compact , or that U(ϕ) is compact on f , if the set U(ϕ(V ))f =

{
U(ϕ(v))f : v ∈ V

}

is precompact. We say that U(ϕ) is ergodic on H if there are no U(ϕ)-invariant vectors
in H, and that U(ϕ) is compact on H if U(ϕ) is compact on all f ∈ H. We say that
U(ϕ) is weakly mixing on H if the induced action of V on H ⊗ H, U(ϕ(v))(f ⊗ g) =(
U(ϕ(v))f

)
⊗
(
U(ϕ(v))g

)
, v ∈ V , is ergodic. We also introduce the following notation:

Hinv(U(ϕ)) =
{
f ∈ H : f is U(ϕ)-invariant

}
,

Hc(U(ϕ)) =
{
f ∈ H : f is U(ϕ)-compact

}
.

It is clear that Hinv(U(ϕ)) and Hc(U(ϕ)) are U -invariant subspaces of H.

3.8. In order to unite the cases charF = 0 and charF = p, we introduce the following
notation. Let A be a finite subset of W and let n ∈ N. If charF = 0, we define Λ to be
the set of all subspaces of SpanF (A), Ω to be the set of all polynomials V −→ W with

20



coefficients in SpanF (A), write v
∗ = v for v ∈ V and set V ∗ = V . If charF = p < ∞, we

take m = [logp n], define Λ to be the set of all (p,A,m)-spaces (see section 1.25), Ω to be
the set of all polynomials V −→ W of formal degree ≤ n with coefficients in SpanFm

(A),

write v∗ = vp
m

for v ∈ V and set V ∗ =
{
v∗ : v ∈ V

}
. Then, independently of charF , we

have the following:

(i) Λ satisfies the ascending chain condition. (If charF = 0, this is clear; for charF < ∞
see Lemma 1.28.)

(ii) For any polynomial ϕ ∈ Ω one has Span
(
Ran(ϕ − ϕ(0))

)
∈ Λ. (If charF = 0, this

follows from Theorem 1.13; for charF <∞ see section 1.26.)

(iii) Ω is closed under addition and under the taking of derivatives with step v∗ ∈ V ∗: if
ϕ,ϕ′ ∈ Ω then ϕ + ϕ′ ∈ Ω and Dv∗ϕ ∈ Ω for any v∗ ∈ V ∗. (The latter follows from the
linearity of Dv and formula (1.1).)

(iv) If λ is the linear part of a polynomial ϕ ∈ Ω then Span
(
Ran(ϕ− λ)

)
6⊆ L ∈ Λ implies

Span
(
Ran(Dv∗ϕ)

)
= Span

(
Ran(Dv∗(ϕ− λ))

)
6⊆ L for almost all v ∈ V . (For charF <∞

this follows from Proposition 1.29; the case charF = 0 is left to the reader.)

3.9. Let U be a unitary action of W on H, let ϕ:V −→ W be a polynomial, and let W ′

be the subgroup of W generated by ϕ(V ), i.e. W ′ = Span
(
Ran(ϕ)

)
. Clearly, the space

Hinv(U(ϕ)) coincides with the space of U |W ′
-invariant vectors in H, so U(ϕ) is ergodic if

and only if U |W ′
is ergodic. An analogous statement is true for compact/weakly mixing

actions, but this is less obvious; see Theorem 3.17 below.

3.10. The mean ergodic theorem for polynomial actions reads as follows:

Theorem. Let U(ϕ) be a polynomial unitary action of V on a Hilbert space H. For any
f ∈ H one has (along any Følner sequence) C-lim

u∈V
U(ϕ(u))f = Pf , where P is the orthogo-

nal projection onto Hinv(U(ϕ)). In particular, if U(ϕ) is ergodic then C-lim
u∈V

U(ϕ(u))f = 0

for all f ∈ H.

The case V = F of this theorem was obtained in [La].

Proof. We use induction on Degϕ; the degree 1 case is given by Theorem 3.4. Suppose
the result is valid for polynomials of degree less than that of ϕ. It suffices to show that if
U(ϕ) is ergodic then C-lim

u∈V
U(ϕ(u))f = 0 for all f ∈ H. Moreover, by a routine application

of Zorn’s Lemma it is enough to find a nontrivial U(ϕ)-invariant subspace L of H such
that C-lim

u∈V
U(ϕ(u))f = 0 for all f ∈ L. This is what we shall do.

We may assume that ϕ(0) = 0. Let Degϕ = n and let A ⊂W be the set of coefficients
of ϕ. Introduce Λ, Ω and ∗ as in 3.8. Utilizing 3.8(i), choose a maximal element L of Λ
(possibly, L = {0}) with the property that the space L = Hinv(U |L) is nontrivial. Since
U(ϕ) has no invariant vectors, Ran(ϕ) 6⊆ L. Let λ be the linear part of ϕ. We consider
two cases:

Case 1: Ran(ϕ− λ) 6⊆ L.
By 3.8(ii) and (iii), Dv∗ϕ ∈ Ω, so that Ran(Dv∗ϕ) ∈ Λ for all v ∈ V . By 3.8(iv),
Ran(Dv∗ϕ) ∈ Λ for all v ∈ V and Ran(Dv∗ϕ) 6⊆ L for almost all v ∈ V . For v ∈ V , if
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Ran(Dv∗ϕ) 6⊆ L then Ran(Dv∗ϕ) has no invariant vectors in L, since otherwise we could
increase L to L+Span

(
Ran(Dv∗ϕ)

)
. This means that for almost all v ∈ V the polynomial

action U(Dv∗ϕ) is ergodic on L. By the induction hypothesis, for almost all v ∈ V we
have C-lim

u∈V
U(Dv∗ϕ(u))f = 0 for all f ∈ L, which implies that

C-lim
u∈V

〈
U
(
ϕ(u+ v∗)

)
f, U(ϕ(u))f

〉
= C-lim

u∈V

〈
U
(
ϕ(u+ v∗)− ϕ(u)− ϕ(v∗)

)
f, U(ϕ(v∗))f

〉

= C-lim
u∈V

〈
U(Dv∗ϕ(u))f, U

(
ϕ(v∗)

)
f
〉
=

〈
C-lim
u∈V

U(Dv∗ϕ(u))f, U(ϕ(v∗))f
〉
= 0.

Since V ∗ =
{
v∗ : v ∈ V

}
is an infinite subgroup of V , the conclusion of Lemma 2.9 gives

C-lim
u∈V

U(ϕ(u))f = 0 for all f ∈ L.

Case 2: Ran(ϕ− λ) ⊆ L.
By one of Theorems 1.15 or 1.23, depending on whether charF = 0 or charF = p,
Ran(ϕ− λ) ⊆ ∑

v∈V Span
(
Ran(Dv∗ϕ)

)
. It follows that U(ϕ)|L = U(λ)|L. Thus, The-

orem 3.4 applies, as C-lim
u∈V

U(ϕ(u))f = C-lim
u∈V

U(λ(u))f = 0 for all f ∈ L.

3.11. We now turn to compactness and weak mixing.

Lemma. Let C1, C2 be two sets of unitary operators on a Hilbert space H with TS = ST
for all T ∈ C1, S ∈ C2, and let f ∈ H be such that the sets C1f , C2f are precompact.
Then C1C2f is precompact.

Proof. For any ε > 0 we can choose T1, . . . , Tk ∈ C1 and S1, . . . , Sl ∈ C2 such that
{Tif}ki=1 is an ε-net in C1f and {Sjf}lj=1 is an ε-net in C2f . One may routinely check

that {TiSjf}k,li,j=1 is a 2ε-net for C1C2f .

3.12. Corollary. Let U be a unitary action of W on H and let ϕ1, ϕ2:V −→W . If both
U(ϕ1) and U(ϕ2) are compact on H then U(ϕ1 + ϕ2) is compact on H.

3.13. Theorem. Fix a Følner sequence for V . Let U(ϕ) be a polynomial action of V
on a Hilbert space H, let K be the space of U(ϕ)-invariant vectors in H ⊗ H and let
f ∈ H. Then f ⊗ f ⊥ K iff f ⊗ g ⊥ K for all g ∈ H iff D-lim

u∈V

〈
U(ϕ(u))f, f

〉
= 0 iff

D-lim
u∈V

〈
U(ϕ(u))f, g

〉
= 0 for all g ∈ H. In particular, U(ϕ) is weakly mixing on H if and

only if D-lim
u∈V

〈
U(ϕ(u))f, g

〉
= 0 for all f, g ∈ H.

Proof. We use the fact that for a bounded set {au}u∈V of real numbers, D-lim
u∈V

au = 0 if

and only if C-lim
u∈V

|au| = 0 if and only if C-lim
u∈V

|au|2 = 0. Suppose D-lim
u∈V

〈
U(ϕ(u))f, f

〉
= 0.

Letting P be the projection onto the space of U(ϕ)-invariant vectors for the induced action
on H⊗H, we have for arbitrary g ∈ H,

∥∥P (f ⊗ g)
∥∥2 = C-lim

u∈V

〈
U(ϕ(u))(f ⊗ g), f ⊗ g

〉
= C-lim

u∈V

(〈
U(ϕ(u))f, f

〉
·
〈
U(ϕ(u))g, g

〉)

≤ C-lim
u∈V

‖g‖2
(
C-lim
u∈V

∣∣〈U(ϕ(u))f, f
〉∣∣
)
= 0.
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Suppose next that f ⊗ f ⊥ K. Then

C-lim
u∈V

∣∣〈U(ϕ(u))f, g
〉∣∣2 = C-lim

u∈V

(〈
U(ϕ(u))f, g

〉
·
〈
U(ϕ(u))f, g

〉)

= C-lim
u∈V

〈
U(ϕ(u))(f ⊗ f), g ⊗ g

〉
=

〈
P (f ⊗ f), g ⊗ g

〉
= 0.

3.14. Lemma. Let U be a unitary action of W on H and let ϕ1, ϕ2 be polynomials
V −→W . If U(ϕ1) is compact on H and U(ϕ2) is weakly mixing on H, then U(ϕ1 + ϕ2)
is weakly mixing on H.

Proof. Let f, g ∈ H. Let {f1, . . . , fk} be an ε-net for
{
U(ϕ1(u))f : u ∈ V

}
. Then for all

u ∈ V we have

∣∣〈U
(
(ϕ1 + ϕ2)(u)

)
f, g

〉∣∣ ≤ ε‖g‖+
k∑

i=1

∣∣〈U(ϕ2(u))fi, g
〉∣∣.

Since ε is arbitrary and D-lim
u∈V

∣∣〈U(ϕ2(u))fi, g
〉∣∣ = 0, 1 ≤ i ≤ k, we are done.

3.15. In light of Theorem 3.13 we introduce the following terminology. Given a unitary
action U of W on H and a mapping ϕ:V −→ W , we say that U(ϕ) is weakly mixing on
f ∈ H if D-lim

u∈V

〈
U(ϕ(u))f, g

〉
= 0 for all g ∈ H. (Note that this property is independent

of the Følner sequence chosen in Theorem 3.13.) We say that U(ϕ) is weakly mixing on
L ⊆ H if U(ϕ) is weakly mixing on all f ∈ L. Finally we define

Hwm(U(ϕ)) =
{
f ∈ H : U(ϕ) is weakly mixing on f

}
.

We remark that Hwm(U(ϕ)) is a U -invariant subspace of H.

3.16. Lemma. Let U be a unitary action of W on H. For any mapping ϕ:V −→ W ,
Hc(U(ϕ)) ⊥ Hwm(U(ϕ)).

Proof. Let f ∈ Hc(U(ϕ)) and g ∈ Hwm(U(ϕ)). Let ε > 0 be arbitrary and let f1, . . . , fk
be an ε-net for

{
U(ϕ(u))f : u ∈ V

}
. Fix a Følner sequence and choose i, 1 ≤ i ≤ k, such

that Ei =
{
u ∈ V : ‖U(ϕ(u))f − fi‖ < ε

}
satisfies d(Ei) > 0.

Let F =
{
u ∈ V : |〈U(ϕ(u))g, fi〉| > ε

}
. Then d(F ) = 0. Let u ∈ Ei \ F . We have

〈f, g〉 =
〈
U(ϕ(u))f, U(ϕ(u))g

〉
≤

∣∣〈U(ϕ(u))f − fi, U(ϕ(u))g
〉∣∣+

∣∣〈fi, U(ϕ(u))g
〉∣∣

≤ ‖U(ϕ(u))f − fi‖ · ‖g‖+ ε ≤ ε(‖g‖+ 1).

As ε is arbitrary, 〈f, g〉 = 0.

3.17. Theorem. Let U be a unitary action of W on a Hilbert space H, let ϕ:V −→ W
be a polynomial with zero constant term and let W ′ = Span

(
Ran(ϕ)

)
. Then

(i) Hc(U(ϕ)) = Hc(U |W ′
);

(ii) Hwm(U(ϕ)) = Hwm(U |W ′
);

(iii) H = Hwm(U(ϕ))⊕Hc(U(ϕ)).
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Proof. In fact, the weak mixing/compactness dichotomy is a corollary of the mean ergodic
theorem, applied to the induced diagonal action on H⊗H, however we give a direct proof,
analogous to that of Theorem 3.10. (i) is a direct consequence of Lemma 3.11. (ii) is
corollary of (i), (iii) and Theorem 3.6. To prove (iii), we use induction on Degϕ. The degree
1 case is Theorem 3.6. The orthogonality of Hwm(U(ϕ)) and Hc(U(ϕ)) was established in
Lemma 3.16. Hence it suffices to show that Hc(U(ϕ))⊥ ⊆ Hwm(U(ϕ)), that is, that U(ϕ)
is weakly mixing on Hc(U(ϕ))⊥. Denote Hc(U(ϕ))⊥ by K. We must show that U(ϕ) is
weakly mixing on K under the assumption that U(ϕ) has no compact vectors in K. Again,
by a routine application of Zorn’s lemma, it is enough to find a nontrivial U(ϕ)-invariant
subspace L of K such that U(ϕ) is weakly mixing on L.

Let Degϕ = n and let A ⊂ W be the set of coefficients of ϕ. Let Λ, Ω and ∗ be as
in 3.8. Utilizing 3.8(i), choose a maximal element L of Λ (possibly, L = {0}) with the
property that the space L = Kc(U |L) is nontrivial. Since U(ϕ) has no compact vectors in
K, Ran(ϕ) 6⊆ L. Let λ be the linear part of ϕ. We have two cases:

Case 1: Ran(ϕ− λ) 6⊆ L.
By 3.8(iv), Ran(Dv∗ϕ) 6⊆ L for almost all v ∈ V . For v ∈ V let W ′

v = Span
(
Ran(Dv∗ϕ)

)
.

By 3.8(ii) and (iii), Dv∗ϕ ∈ Ω, so that W ′
v ∈ Λ, v ∈ V . Thus, if Ran(Dv∗ϕ) 6⊆ L, then

Dv∗ϕ cannot have compact vectors in L, as otherwise we could increase L to L+W ′
v. We

have, therefore, that for almost all v ∈ V , U(Dv∗ϕ) has no compact vectors in L. By
the induction hypothesis, U(Dv∗ϕ) is weakly mixing on L for almost all v ∈ V , and by
Theorem 3.13, for these v we have D-lim

u∈V

〈
U(Dv∗ϕ(u))f, g

〉
= 0 for all f, g ∈ L. Hence

D-lim
u∈V

〈
U
(
ϕ(u+ v∗)

)
f, U(ϕ(u))f

〉
= D-lim

u∈V

〈
U
(
ϕ(u+ v∗)− ϕ(u)− ϕ(v∗)

)
f, U(ϕ(v∗))f

〉

= D-lim
u∈V

〈
U(Dv∗ϕ(u))f, U(ϕ(v∗))f

〉
= 0

for almost all v ∈ V . The conclusion of Lemma 2.10 therefore holds, namely that
D-lim
u∈V

〈
U(ϕ(u))f, g

〉
= 0 for f, g ∈ L.

Case 2: Ran(ϕ− λ) ⊆ L.
Since Span

(
Ran(Dv∗ϕ)

)
= Span

(
Ran(Dv∗(ϕ − λ))

)
⊆ Span

(
Ran(ϕ)

)
, U(Dv∗ϕ) are com-

pact on L for all v ∈ V . By (i), U |W ′

v
is compact on L for all v ∈ V . By either Theorem 1.15

or Theorem 1.23, applied to the polynomial ϕ − λ, there exist v1, . . . , vr ∈ V such that
Span

(
Ran(ϕ− λ)

)
=

∑r
s=1W

′
vs . So, by Lemma 3.11, U(ϕ− λ) is compact on L. If U(λ)

had a compact vector in L, by Lemma 3.11 it would also be compact for U |W ′
, a contradic-

tion. Hence, by Theorem 3.6, U(λ) is weakly mixing on L, and therefore by Lemma 3.14,
U(ϕ) is weakly mixing on L.

3.18. We will need a “relative” version of Theorem 3.6, where one deals with a Hilbert
space “over” a measure space Y instead of a conventional Hilbert space. We will exposit
the corresponding theory in the language of Y -Hilbert spaces (see [Le]). One could use the
language of Hilbert bundles instead (see, for example, [Z1], [Z2]). Yet another possibility
is to confine ourselves to L∞(Y )-submodules of the Hilbert space L2(X), where X is an
extension of Y (see also section 4.2 below); in this case we address the reader to [F1], [FK3]
or [BMZ]. The proofs of the propositions below are “relativizations” of the proofs of the
corresponding propositions 3.5 – 3.17 and we omit them.
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3.19. LetY = (Y,D, ν) be a probability measure space. When it does not lead to confusion,
we will identify Y and Y . A Y -pre-Hilbert space H is a L∞(Y )-module with a sesquilinear
mapping 〈 , 〉:H×H −→ L1(Y ), the value of 〈f, g〉, f, g ∈ H, at y ∈ Y being 〈f, g〉y, which
satisfies 〈f, f〉y ≥ 0 for almost all y ∈ Y and all f ∈ H. We put ‖f‖y =

√
〈f, f〉y. A

Y -pre-Hilbert space inherits a pre-Hilbert space structure by 〈f, g〉Y =
∫
〈f, g〉y dν; we say

that H is a Y -Hilbert space if H is a Hilbert space with respect to 〈 , 〉Y .

3.20. Algebraic operations on Y -Hilbert spaces are naturally defined. In particular, the
tensor product H1⊗Y H2 of two Y -Hilbert spaces is the Y -Hilbert space which is obtained
as the completion of the algebraic tensor product H1 ⊗L∞(Y ) H2. The complex conjugate

H of a Y -Hilbert space H is defined by H =
{
f̄ : f ∈ H

}
, h̄f̄ = hf for h ∈ L∞(Y ), and

〈f̄ , ḡ〉 = 〈f, g〉.

3.21. A Y -unitary operator T on a Y -Hilbert space H is an invertible measure preserving
transformation T :Y −→ Y and an invertible linear transformation T :H −→ H satisfying
〈Tf, Tg〉 = T 〈f, g〉 and T (hf) = ThTf for any f, g ∈ H and h ∈ L∞(Y ). Note that such T
is also a unitary operator with respect to the Hilbert structure of H. A Y -unitary action
U of a group G on a Y -Hilbert space H is a homomorphism U of G into the group of
Y -unitary operators on H.

If V , W are finite dimensional vector spaces, ϕ:V −→ W is a polynomial and U is a
Y -unitary action of W on H, we call the mapping U(ϕ) a polynomial Y -unitary action of
V on H.

3.22.Given ε > 0, we say that a setQ ⊆ H is an ε-net for f ∈ H over Y if

∫
inf
g∈Q

‖f − g‖2y dν
< ε2. We say that a set Q ⊆ H is an ε-net for C ⊆ H over Y if Q is an ε-net over Y for
all f ∈ C. We say that a set C ⊆ H is Y -precompact if for any ε > 0 there exists a finite
ε-net for C over Y .

3.23. We will need the following fact:

Lemma. Let {g1, . . . , gk} be an ε-net for f over Y . Then for any g ∈ H,

∥∥〈f, g〉
∥∥
L1(Y )

≤
k∑

i=1

∥∥〈gk, g〉
∥∥
L1(Y )

+ ε‖g‖Y .

Proof. For y ∈ Y , let i(y) be the first i, 1 ≤ i ≤ k, such that ‖f − gi(y)‖y is minimized.
Then

∫ ∣∣〈f, g〉y
∣∣dν −

k∑

i=1

∫ ∣∣〈gk, g〉y
∣∣dν ≤

∫ ∣∣〈f, g〉y
∣∣dν −

∫ ∣∣〈gi(y), g〉y
∣∣dν ≤

∫ ∣∣〈f − gi(y), g〉y
∣∣dν

≤
∫

‖f − gi(y)‖y · ‖g‖ydν ≤
(∫

‖f − gi(y)‖2ydν
)1/2(∫

‖g‖2ydν
)1/2

≤ ε
(∫

‖g‖2ydν
)1/2

.

3.24. Lemma. Let C1, C2 be two sets of Y -unitary operators on a Y -Hilbert space H
with TS = ST for all T ∈ C1, S ∈ C2, and let f ∈ H be such that the sets C1f , C2f are
Y -precompact. Then C1C2f is Y -precompact.
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3.25. Let U be a mapping of a group G into the group of Y -unitary operators on a Y -
Hilbert space H. We say that U is compact on f ∈ H relative to Y or that f is compact
relative to Y (with respect to U) if the set U(G)f is precompact relative to Y . We say that
U is compact on H relative to Y if U is compact relative to Y on all f ∈ H.

3.26. Corollary of Lemma 3.24. Let ϕ1, ϕ2 be mappings of a group V into an abelian
group G and let U be a Y -unitary action of G on a Y -Hilbert space H. If both U(ϕ1) and
U(ϕ2) are compact on H relative to Y then U(ϕ1 + ϕ2) is compact on H relative to Y .

3.27. We say that a Y -unitary action of a group G on a Y -Hilbert space H is weakly mixing
relative to Y if the induced unitary action of G on the Hilbert space H⊗Y H is ergodic.

Theorem. Let K be the space of U -invariant vectors in H ⊗Y H and let f ∈ H.
Then f ⊗ f ⊥ K iff f ⊗ g ⊥ K for all g ∈ H iff D-lim

u∈G

〈
U(u)f, f

〉
= 0 in L1(Y ) iff

D-lim
u∈G

〈
U(u)f, g

〉
= 0 for all g ∈ H. In particular, U is weakly mixing relative to Y if and

only if D-lim
u∈G

〈
U(u)f, g

〉
= 0 in L1(Y ) for all f, g ∈ H.

3.28. Let U be a Y -unitary action of an abelian group G on a Y -Hilbert space H. For
f ∈ H we say that U is weakly mixing on f relative to Y if D-lim

u∈G

〈
U(u)f, g

〉
= 0 in L1(Y )

for all g ∈ H, and define

Hc

Y (U) =
{
f ∈ H : U is compact on f relative to Y

}
,

Hwm

Y (U) =
{
f ∈ H : U is weakly mixing on f relative to Y

}
.

Theorem. H = Hc

Y (U)⊕Hwm

Y (U).

3.29. We say that a polynomial Y -unitary action of a vector space V on a Y -Hilbert space
H is weakly mixing relative to Y if the induced polynomial unitary action of V on the
Hilbert space H⊗Y H is ergodic.

Theorem. Let K be the space of U(ϕ)-invariant vectors in H⊗Y H and let f ∈ H. Then
f⊗f ⊥ K iff f⊗g ⊥ K for all g ∈ H iff D-lim

u∈V

〈
U(ϕ(u))f, f

〉
= 0 iff D-lim

u∈V

〈
U(ϕ(u))f, g

〉
= 0

for all g ∈ H. In particular, U(ϕ) is weakly mixing on H relative to Y if and only if
D-lim
u∈V

〈
U(ϕ(u))f, g

〉
= 0 in L1(Y ) for all f, g ∈ H.

3.30. Lemma. Let U be a Y -unitary action of W on a Y -Hilbert space H and let ϕ1, ϕ2

be polynomials V −→ W . If U(ϕ1) is compact on H relative to Y and U(ϕ2) is weakly
mixing on H relative to Y , then U(ϕ1 + ϕ2) is weakly mixing on H relative to Y .

3.31. We say that a set Q in a Y -Hilbert space H is Y -bounded if there exists b ∈ R such
that for every f ∈ Q, ‖f‖y < b for almost all y ∈ Y . The following is the “Y -analogue” of
Lemma 2.10.
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Lemma. Let G be an infinite abelian group and let {fu}u∈G be a Y -bounded set in a Y -
Hilbert space H indexed by the elements of G. Assume that there exists an infinite subgroup
G∗ of G such that D-lim

v∗∈G∗

D-limsup
u∈G

∥∥〈fu+v∗ , fu〉
∥∥
L1(Y )

= 0. Then D-lim
u∈G

〈fu, g〉 = 0 in L1(Y )

for any g ∈ H.

3.32. Let U(ϕ) be a polynomial Y -unitary action of V on a Y -Hilbert space H. For f ∈ H
we say that U(ϕ) is weakly mixing on f relative to Y if D-lim

u∈V

〈
U(ϕ(u))f, g

〉
= 0 for all

g ∈ H, and define

Hc

Y (U(ϕ)) =
{
f ∈ H : U(ϕ) is compact on f relative to Y

}
,

Hwm

Y (U(ϕ)) =
{
f ∈ H : U(ϕ) is weakly mixing on f relative to Y

}
.

Theorem. Let U be a Y -unitary action of W on a Y -Hilbert space H, let ϕ:W −→ V be
a polynomial with zero constant term and let W ′ = Span

(
Ran(ϕ)

)
. Then

(i) Hc

Y (U(ϕ)) = Hc

Y (U |W ′
);

(ii) Hwm

Y (U(ϕ)) = Hwm

Y (U |W ′
);

(iii) H = Hwm

Y (U(ϕ))⊕Hc

Y (U(ϕ)).

The proof is completely analogous to the proof of Theorem 3.17.

4. Measure preserving actions and proof of main theorem

4.1. A mapping π:X −→ Y of a probability measure space (X,B, µ) into a probabil-
ity measure space (Y,D, ν) is called a factor map if π−1(D) ⊆ B and for any D ∈ D,
µ(π−1(D)) = ν(D). If this is the case, X is called an extension of Y and Y is called a
factor of X. In a slight abuse of terminology we will often refer to the factor map itself as
an “extension”. A factor map π induces an isometric embedding π∗:L2(Y ) −→ L2(X) by
π∗f(x) = f(π(x)); we will identify L2(Y ) with π∗(L2(Y )) ⊆ L2(X).

If B′ is a sub-σ-algebra of B, the identity mapping X −→ X defines an extension
(X,B, µ) −→ (X,B′, µ); we will call X′ = (X,B′, µ) an inner factor of X = (X,B, µ).

If X is an extension of X ′ and X ′ is an extension of Y , then X is an extension of Y
with X ′ being a subextension of X.

4.2. Let (X,B, µ) −→ (Y,D, ν) be an extension. For f ∈ L2(X) let EY (f) denote the
conditional expectation of f given Y , namely the projection of f onto L2(Y ). The linear
mapping EY :L

2(X) −→ L2(Y ) is extendible by continuity to a surjective linear mapping
EY :L

1(X) −→ L1(Y ). Moreover, EY maps Lp(X) onto Lp(Y ) for all p ∈ [1,∞]. (See
[F2], Theorem 5.6.) Putting 〈f, g〉 = EY (fḡ) ∈ L1(Y ) for f, g ∈ L2(X) turns L2(X) into
a Y -Hilbert space (see 3.19 above).

4.3. A transformation T of an extension π:X −→ Y is a pair (TX , TY ), where TX and TY
are measure preserving transformations of X and Y respectively, satisfying π◦TX = TY ◦π.
Depending on the context, we may use the symbol T to denote either TX or TY .
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If T is a measure preserving transformation of a measure space X = (X,B, µ) and
an inner factor Y = (X,B′, µ) of X is such that L2(Y) is T -invariant, then T induces a
transformation of the extension X −→ Y.

4.4. Let T be an invertible transformation of an extension π:X −→ Y . T induces an
automorphism of L1(X), (Tf)(x) = f(Tx), which we will identify by the same symbol T .
T preserves multiplication, T (hf) = T (h)T (f) for f ∈ L1(X), h ∈ L∞(X). T |L2(X)

is

a unitary operator on the Hilbert space L2(X); this operator will also be denoted by T .
L2(Y ) is invariant under T , therefore L2(Y )⊥ is also invariant, so that EY (Tf) = T (EY f)
for all f ∈ L2(X). This implies EY (Th) = T (EY h) for all h ∈ L1(X); in particular,
EY (TfTg) = TEY (fḡ) for f, g ∈ L2(X). It follows that, in terms of 3.21, T is a Y -unitary
operator on the Y -Hilbert space L2(X).

4.5. A measure preserving action U of a group G on an extension π:X −→ Y is a homo-
morphism of G into the group of invertible transformations of π. Such an action defines a
Y -unitary action of G on the Y -Hilbert space L2(X), which we will identify by the same
symbol U .

Let U be a measure preserving action of a group G on an extension π:X −→ Y . We
say that U is compact on X relative to Y if the corresponding Y -unitary action of G is
compact on L2(X) relative to Y . Note that U is always compact on L2(Y ) relative to Y ;
we say that U is weakly mixing on X relative to Y if the corresponding Y -unitary action
of G is weakly mixing, relative to Y , on the orthocomplement L2(Y )⊥ of L2(Y ) in L2(X).

If U is a measure preserving action of a vector space W on an extension π:X −→ Y
and ϕ:V −→ W is a polynomial, we call U(ϕ) a polynomial action of V on π. We say
that U(ϕ) is compact on X relative to Y if the induced polynomial unitary action U(ϕ)
is compact on L2(X) relative to Y , and that U(ϕ) is weakly mixing relative to Y if the
induced polynomial unitary action U(ϕ) is weakly mixing on L2(Y )⊥ relative to Y (see
3.29).

4.6. Let U(ϕ) be a polynomial action on an extension π: (X,B, µ) −→ (Y,D, ν); denote
L2(X) byH. One can check that for any f, g ∈ Hc

Y (U(ϕ)), one has max{f, g} ∈ Hc

Y (U(ϕ)).
It follows thatHc

Y (U(ϕ)) = L2(X′) for some inner factorX′ = (X,B′, µ) of (X,B, µ). Since
L2(Y ) ⊆ Hc

Y (U(ϕ)), X′ is an extension of Y . Since Hc

Y (U(ϕ)) is U -invariant, the action U
and the polynomial action U(ϕ) are defined on X′. (See [F2], page 137 for more details.)

4.7. We fix now a vector space W over a countable field F . Let A be a finite subset of
W and let n ∈ N; define Λ, Ω and ∗ as in 3.8. Let U be an action of W on an extension
X −→ Y . We say that X −→ Y is primitive (with respect to U , n and A) if there exists a
space L ∈ Λ such that, for any L′ ∈ Λ, U |L′

is compact on X relative to Y if L′ ⊆ L and
is weakly mixing on X relative to Y otherwise.

If X −→ Y is a primitive extension then, by Theorem 3.32, for any ϕ ∈ Ω, U(ϕ) is
either compact relative to Y or weakly mixing relative to Y : if Ran(ϕ− ϕ(0)) ⊆ L, U(ϕ)
is compact; if Ran(ϕ− ϕ(0)) 6⊆ L, U(ϕ) is weakly mixing.

4.8. Theorem. Any nontrivial extension has a nontrivial primitive subextension.
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Proof. Let X −→ Y be a nontrivial extension; put H = L2(X). Utilizing 3.8(i), choose
a maximal element L of Λ (possibly, L = {0}) with the property that Hc

Y

(
U |L

)
6= L2(Y ).

Denote Hc

Y

(
U |L

)
by L. By 4.6, L = L2(X ′) for some subextension X ′ −→ Y of X −→ Y .

Since L is U -invariant, the action of U on X ′ is defined. For any L′ ⊆ L, U |L′
is compact

on X ′ relative to Y . If L′ ∈ Λ and L′ 6⊆ L, then there cannot be a vector in L\L2(Y ) which
is compact for U |L′

relative to Y , since otherwise we could extend L to L+L′. Therefore,

by Theorem 3.32, U |L′
is weakly mixing on X ′ relative to Y in this case. Hence, X ′ −→ Y

is a primitive extension.

4.9. Now let P be a finite family of polynomials from a finite dimensional space V into W ,
let A be the set of all coefficients of the elements of P and let n = max

{
degϕ : ϕ ∈ P

}
. Let

U be an action ofW on an extension X −→ Y , and assume that X −→ Y is primitive with
respect to U , n and A. Let P =

⋃l
i=1 Pi be the partition of P into the classes of elements

whose differences are compact relative to Y . Thus, for any i and ϕ1, ϕ2 ∈ Pi, U(ϕ1 − ϕ2)
is compact on X relative to Y (this is equivalent to Ran

(
ϕ1 − ϕ2 − ϕ1(0) + ϕ2(0)

)
⊆ L)

and for any i1 6= i2, ϕ1 ∈ Pi1 and ϕ2 ∈ Pi2 , U(ϕ1 − ϕ2) is weakly mixing on X relative to
Y (this is equivalent to Ran

(
ϕ1 − ϕ2 − ϕ1(0) + ϕ2(0)

)
6⊆ L).

Theorem. For any set of functions {fϕ}ϕ∈P ⊂ L∞(X),

D-lim
u∈V

(
EY

(∏

ϕ∈P

U(ϕ(u))fϕ
)
−

l∏

i=1

EY

( ∏

ϕ∈Pi

U(ϕ(u))fϕ
))

= 0 in L1(Y ).

4.10. We start with the following lemma.

Lemma. Let π: (X,B, µ) −→ (Y,D, ν) be an extension, let C1, . . . , Ck ⊂ L∞(X) be Y -
precompact sets of uniformly bounded functions on X and let T1, . . . , Tk be mappings of an
abelian group V into the group of transformations of π satisfying

D-lim
u∈V

(
EY

( k∏

j=1

Tj(u)fj
)
−

k∏

j=1

EY

(
Tj(u)fj

))
= 0 in L1(Y )

for all fj ∈ L∞(X), j = 1, . . . , k. Then for any mappings αj :V −→ Cj, j = 1, . . . , k, one
has

D-lim
u∈V

(
EY

( k∏

j=1

Tj(u)αj(u)
)
−

k∏

j=1

EY

(
Tj(u)αj(u)

))
= 0 in L1(Y ). (4.1)

Proof. Because of the multilinearity of (4.1) we may replace each Cj by
{
f −EY (f) : f ∈

Cj

}
, j = 1, . . . , k, and assume that EY (αj(u)) = 0 for all u ∈ V and j = 1, . . . , k. Indeed,

for each f ∈ L∞(X) let f ′ = f −EY (f). Then, writing for convenience α′
j(u) for (αj(u))

′,
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we have

EY

( k∏

j=1

Tj(u)αj(u)
)
−

k∏

j=1

EY

(
Tj(u)αj(u)

)

= EY

( k∏

j=1

Tj(u)
(
α′
j(u) + EY (αj(u))

))
−

k∏

j=1

Tj(u)EY (αj(u))

=
∑

I⊆{1,...,k}
I 6=∅

EY

(∏

j∈I

Tj(u)α
′
j(u) ·

∏

j 6∈I

Tj(u)EY (αj(u))
)

=
∑

I⊆{1,...,k}
I 6=∅

∏

j 6∈I

Tj(u)EY (αj(u)) · EY

(∏

j∈I

Tj(u)α
′
j(u)

)
,

and we are done if we show that D-lim
u∈V

EY

(∏
j∈I Tj(u)α

′
j(u)

)
= 0 for any I ⊆ {1, . . . , k},

I 6= ∅.
After a renumeration of indices we may assume that I = {1, . . . , l}. Without loss

of generality sup |f | ≤ 1 for all f ∈ C1 ∪ . . . ∪ Cl. Fix an ε > 0 and choose an ε-net
{f1,1, . . . , f1,m1

} for C1 over Y , an ε
m1

-net {f2,1, . . . , f2,m2
} for C2 over Y , . . ., and an

ε
m1...ml

-net {fl,1, . . . , fl,ml
} for Cl over Y . Then for any u ∈ V , {Tj(u)fj,1, . . . , Tj(u)fj,mj

}
is an ε

m1...mj
-net for Tj(u)Cj over Y , and by Lemma 3.23 we have

∥∥∥EY

( l∏

j=1

Tj(u)αj(u)
)∥∥∥

L1(Y )

≤
m1∑

i1=1

∥∥∥EY

(
T1(u)f1,i1 ·

l∏

j=2

Tj(u)αj(u)
)∥∥∥

L1(Y )
+ ε

∥∥∥
l∏

j=2

Tj(u)αj(u)
∥∥∥
Y

<

m1∑

i1=1

∥∥∥EY

(
T1(u)f1,i1 ·

l∏

j=2

Tj(u)αj(u)
)∥∥∥

L1(Y )
+ ε

≤
m1∑

i1=1

m2∑

i2=1

∥∥∥EY

(
T1(u)f1,i1 · T2(u)f2,i2 ·

l∏

j=3

Tj(u)αj(u)
)∥∥∥

L1(Y )
+m1

ε
m1

+ ε

≤ . . . ≤
m1∑

i1=1

. . .

ml∑

il=1

∥∥∥EY

(
T1(u)f1,i1 · . . . · Tl(u)fl,il

)∥∥∥
L1(Y )

+ lε.

Since ε is arbitrary and, by the assumption of the lemma,

D-lim
u∈V

EY

( l∏

j=1

Tj(u)fj,ij

)
= D-lim

u∈V
EY

( l∏

j=1

Tj(u)fj,ij ·
k∏

j=l+1

Tj(u)1
)

= D-lim
u∈V

l∏

j=1

EY

(
Tj(u)fj,ij

)
·

k∏

j=l+1

EY

(
Tj(u)1

)
= D-lim

u∈V

l∏

j=1

Tj(u)EY

(
fj,ij

)
= 0

for all i1 ∈ {1, . . . ,m1}, . . ., il ∈ {1, . . . ,ml}, we are done.
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4.11. We will also use so-called PET-induction. Let us say that polynomials ϕ1, ϕ2:V −→
W are equivalent if Degϕ1 = Degϕ2 and Deg(ϕ1 − ϕ2) < Degϕ1. Given a finite set P of
polynomials V −→W for m ∈ Z+ we define

ωm(P) = # of equivalence classes of polynomials of degree m in P

and set ω(P) =
(
ω0(P), ω1(P), . . .

)
∈ K, where K is the set of sequences of the form

(k0, k1, . . . , kr, 0, 0, . . .) with r ∈ N, k0, . . . , kr ∈ Z+. K is well ordered by writing (k0, k1,
k2, . . .) < (l0, l1, l2, . . .) if there exists s ∈ Z+ such that km = lm for all m > s and ks < ls.
We say that P ′ precedes P if ω(P ′) < ω(P). PET-induction is induction on ω(P): if S(P)
is a statement to be proved, we check S({0}) and prove S(P) under the assumption that
S(P ′) is true for all P ′ preceding P.

4.12. Lemma. Let P be a finite set of polynomials V −→W .

(i) Let ϕ ∈ P and v ∈ V ; define ϕ′(u) = ϕ(u+v) and P ′ = P ∪{ϕ′}. Then ω(P ′) = ω(P).

(ii) Assume that P does not contain constant polynomials; let ψ be a polynomial of minimal
degree in P and let P ′′ =

{
ϕ− ψ : ϕ ∈ P

}
. Then ω(P ′′) < ω(P).

Proof. (i) Clearly, ϕ′ is equivalent to ϕ, so P ∪ {ϕ′} has the same equivalence classes as
P.

(ii) If ϕ1, ϕ2 ∈ P are equivalent to each other but are not equivalent to ψ, then ϕ1 − ψ
and ϕ2 − ψ are equivalent and Deg(ϕ1 − ψ) = Degϕ1. If ϕ is equivalent to ψ, then
Deg(ϕ − ψ) < Degϕ. Hence, subtracting ψ transforms equivalence classes in P into
equivalence classes of the same degree; the only exception is the class of ψ, which falls into
classes of smaller degree.

4.13. Proof of Theorem 4.9. For each i ∈ {1, . . . , l} fix ϕi ∈ Pi. Since
∏

ϕ∈Pi
U(ϕ(u))fϕ

= U(ϕi)
(∏

ϕ∈Pi
U
(
(ϕ − ϕi)(u)

)
fϕ

)
and the sets

{∏
ϕ∈Pi

U
(
(ϕ − ϕi)(u)

)
fi : u ∈ V

}
are

Y -precompact, an application of Lemma 4.10 reduces the problem to the case |P1| = . . . =
|Pl| = 1. We therefore have to prove that

D-lim
u∈V

(
EY

( l∏

i=1

U(ϕi(u))fi
)
−

l∏

i=1

EY

(
U(ϕi(u))fi

))
= 0 in L1(Y ) (4.2)

for any f1, . . . , fl ∈ L∞(X). After replacing fi by U(ϕi(0))fi, we may assume that ϕi(0) =
0, i = 1, . . . , l. Because of the multilinearity of (4.2), we may also replace fi by fi−EY (fi),
i = 1, . . . , l, and prove

D-lim
u∈V

EY

( l∏

i=1

U(ϕi(u))fi
)
= 0 in L1(Y )

under the assumption that EY (fi) = 0, i = 1, . . . , l.
We will use PET-induction on P = {ϕ1, . . . , ϕl}. The statement of the theorem is

trivial for P = {0}, which gives the base of induction. Let ϕ1 be of minimal degree in P.
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If ϕ1 6= 0, then for any u ∈ V

∥∥∥EY

( l∏

i=1

U(ϕi(u))fi
)∥∥∥

L1(Y )
=

∥∥∥U(ϕ1(u))
(
EY

( l∏

i=1

U(ϕi(u)− ϕ1(u))fi
))∥∥∥

L1(Y )

=
∥∥∥EY

( l∏

i=1

U
(
(ϕi − ϕ1)(u)

)
fi
)∥∥∥

L1(Y )
,

so we may replace P by the family {0, ϕ2 − ϕ1, . . . , ϕl − ϕ1}, which precedes P by
Lemma 4.12(ii). We may therefore assume that ϕ1 = 0. Then U(ϕi) = U(ϕi − ϕ1)
are weakly mixing for all i = 2, . . . , l, and we have to prove that

D-lim
u∈V

EY

(
f1 ·

l∏

i=2

U(ϕi(u))fi
)
= 0 in L1(Y ). (4.3)

For i = 2, . . . , l, let λi be the linear part of ϕi. If U(ϕi − λi) is compact relative to Y ,
we may write

U(ϕi(u))fi = U(λi(u))
(
U((ϕi − λi)(u))fi

)
,

apply Lemma 4.10 once again and replace ϕi by λi. So, we may assume that for any
i = 2, . . . , l, either ϕi is linear, or U(ϕi − λi) is weakly mixing relative to Y . In the latter
case, Ran(ϕi − λi) 6⊆ L, which implies by 3.8(iv) that Span

(
Ran(Dv∗ϕi)

)
6⊆ L, hence

Dv∗ϕi is weakly mixing relative to Y for almost all v ∈ V .
Let us consider two cases.

Case 1: Not all ϕi, i = 2, . . . , l, are linear.
For v ∈ V , define polynomials ϕi,v, i = 2, . . . , l, v ∈ V , by ϕi,v(u) = ϕi(u + v∗). By
Lemma 3.31, (4.3) would follow from

D-lim
v∗∈V ∗

D-limsup
u∈V

∥∥∥EY

( l∏

i=2

U(ϕi(u))fi ·
l∏

i=2

U(ϕi,v(u))f̄i
)∥∥∥

L1(Y )
= 0, (4.4)

which we will now establish.
Fix v ∈ V and define Pv =

{
ϕi, ϕi,v : i = 2, . . . , l

}
. Let us investigate the

weakly mixing/compact properties of differences of the elements of Pv. If ϕi is linear,
then U(ϕi,v − ϕi) = U(ϕi(v

∗)) is constant. If ϕi is non-linear, then U(ϕi,v − ϕi) =
U(Dv∗ϕi)U(ϕi(v

∗)) is weakly mixing relative to Y for almost all v ∈ V . For i 6= j,
U(ϕi −ϕj) is weakly mixing relative to Y and so, U(ϕi,v −ϕj,v) is weakly mixing relative
to Y for all v ∈ V . If i 6= j and ϕi is linear, then U(ϕi,v − ϕj) = U(ϕi − ϕj)U(ϕi(v

∗)) is
weakly mixing relative to Y for all v ∈ V . Finally, let ϕi be non-linear and assume that
there exists w ∈ V such that U(ϕi,w − ϕj) is compact relative to Y . Since for u, v ∈ V

(ϕi,v − ϕi,w)(u) = ϕi(u+ v∗)− ϕi(u+ w∗) = Dv∗−w∗ϕi(u+ w∗) + ϕi(v
∗ − w∗),

and since U(Dv∗−w∗ϕi) is weakly mixing relative to Y for almost all v ∈ V , U(ϕi,v −ϕi,w)
is weakly mixing relative to Y for almost all v ∈ V . By Lemma 3.30, U(ϕi,v − ϕj) =
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U
(
(ϕi,v −ϕi,w)+ (ϕi,w −ϕj)

)
, is weakly mixing relative to Y for almost all v ∈ V . Hence,

for almost all v ∈ V the only case when U(ϕ−ψ) with ϕ,ψ ∈ Pv is compact relative to Y
is when ϕ = ϕi is linear and ψ = ϕi,v.

Assume that ϕ2, . . . , ϕk are linear and ϕk+1, . . . , ϕl are non-linear; since we have at
least one non-linear polynomial, k < l and ϕl is non-linear. Since 0 6= Pv, it follows from
Theorem 4.12(i) that Pv precedes P. So, by the induction hypothesis, we have

D-lim
u∈V

(
EY

( l∏

i=2

U(ϕi(u))fi ·
l∏

i=2

U(ϕi,v(u))f̄i
)

−
k∏

i=2

EY

(
U(ϕi(u))fi · U(ϕi,v(u))f̄i

)
·
l∏

i=k+1

EY

(
U(ϕi(u))fi

)
·
l∏

i=k+1

EY

(
U(ϕi,v(u))f̄i

))
= 0

in L1(Y )

for almost all v ∈ V . Since EY (fk+1) = . . . = EY (fl) = 0,

k∏

i=2

EY

(
U(ϕi(u))fi · U(ϕi,v(u))f̄i

)
·
l∏

i=k+1

EY

(
U(ϕi(u))fi

)
·
l∏

i=k+1

EY

(
U(ϕi,v(u))f̄i

)

= EY

(
U(ϕi(u))fi · U(ϕi,v(u))f̄i

)
·
l∏

i=k+1

U(ϕi(u))EY (fi) ·
l∏

i=k+1

U(ϕi,v(u))EY (f̄i) = 0.

Hence, D-lim
u∈V

EY

(∏l
i=2 U(ϕi(u))fi ·

∏l
i=2 U(ϕi,v(u))f̄i

)
= 0 in L1(Y ) for almost all v ∈ V ,

so that (4.4) holds.

Case 2: ϕ2, . . . , ϕl are all linear.
Then for any u, v ∈ V

EY

( l∏

i=2

U(ϕi(u))fi ·
l∏

i=2

U(ϕi(u+ v))f̄i
)
= EY

( l∏

i=2

U(ϕi(u))(fi · U(ϕi(v))f̄i)
)
,

and by induction on l we get for any v ∈ V

D-lim
u∈V

(
EY

( l∏

i=2

U(ϕi(u))fi ·
l∏

i=2

U(ϕi(u+ v))f̄i
)
−

l∏

i=2

EY

(
fi · U(ϕi(v))f̄i

))
= 0 in L1(Y ).

Since ϕi, i = 2, . . . , l, are Y -weakly mixing, D-lim
v∈V

∥∥EY

(
fi · U(ϕi(v))f̄i

)∥∥
L1(Y )

= 0, which

implies

D-lim
v∈V

D-limsup
u∈V

∥∥∥EY

( l∏

i=2

U(ϕi(u))fi ·
l∏

i=2

U(ϕi(u+ v))f̄i
)∥∥∥

L1(Y )
= 0.

By Lemma 3.31, (4.3) follows.
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4.14. We now pass to the main result of the paper:

Theorem. Let V , W be finite dimensional vector spaces over F , let U be a measure
preserving action of W on a probability measure space (X,B, µ) and let P be a finite family
of polynomials V −→ W with zero constant term. Then for any B ∈ B with µ(B) > 0
there exists c > 0 such that the set

{
u ∈ V : µ

(⋂
ϕ∈P U(ϕ(u))B

)
> c

}
is syndetic in V .

4.15. The remainder of this section constitutes a proof of Theorem 4.14. The strategy
of the proof is as follows. First, we define a property of measure preserving systems that
states, more or less, that a form of Theorem 4.14 holds in the system for any family of
polynomials of at most some fixed formal degree. This property obviously holds for the
trivial system, and we shall show, after disposing of a few preparatory lemmas, that the
property passes to primitive extensions. (This is the main part of the proof.) Moreover,
as one may also easily show that the property holds in systems generated by factors
possessing the property, this is sufficient to prove P-VSz in general, as one may pass
from the trivial system to an arbitrary system via a transfinite chain of primitive and/or
limiting extensions.

4.16. We fix a vector space W over F , n ∈ N and a finite set A ⊂W .
Let U be a measure preserving action of W on a probability measure space Y =

(Y,D, ν). We will say that Y has the VSZ property (with respect to U , n and A) if for any
finite dimensional vector space V over F , any finite family P of polynomials V −→W with
coefficients in Span(A), of formal degree ≤ n and with zero constant term, and any B ∈ B
with µ(B) > 0, there exists c > 0 such that the set

{
u ∈ V : µ

(⋂
ϕ∈P U(ϕ(u))B > c

}
is

syndetic.
We must show that any measure space has the VSZ property with respect to any U ,

n and A.

4.17. Given a probability measure space X = (X,B, µ), the set of inner factors of X is
partially ordered by the rule (X,B1, µ) ≤ (X,B2, µ) if B1 ⊆ B2.

Theorem. Given a measure preserving action U of W on X = (X,B, µ), the set of U -
invariant inner factors of X which have the VSZ property (with respect to U , n and A)
has a maximal element.

Proof. We mimic the proof of Proposition 3.3 in [FK1]. In light of Zorn’s lemma, it suffices
to prove that if {Bβ} is a linearly ordered family of U -invariant sub-σ-algebras of B such
that (X,Bβ , µ) has the VSZ property for all β, then (X,

⋃Bβ , µ) has the VSZ property.
Let B ∈ ⋃Bβ , µ(B) > 0, and let a finite set P of polynomials V −→ W (with

coefficients in Span(A), of formal degree ≤ n and with zero constant term) be given. Find

B′ ∈ Bβ for some β with µ(B′△B) < µ(B)
4|P| . Let µ =

∫
µx dµ be the decomposition of

µ with respect to the factor (X,Bβ , µ). Define D =
{
x ∈ X : µx(B) ≥ 1 − 1

2|P|

}
; then

D ∈ Bβ and µ(D) > 0. (Since µx(B
′) = 1 for x ∈ B′, one would have

µ(B′ \B) ≥ 1

2|P|µ(B
′) >

1

2|P| ·
µ(B)

2
=
µ(B)

4|P|
otherwise.)
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Since (X,Bβ , µ) has the VSZ property, there exists c > 0 such that the set S ={
u ∈ V : µ

(⋂
ϕ∈P U(−ϕ(u))D

)
> c

}
is syndetic. Then for any u ∈ S and any x ∈⋂

ϕ∈P U(−ϕ(u))D we have

µx

( ⋂

ϕ∈P

U(ϕ(u))B
)
≥ 1−

∑

ϕ∈P

(
1− µx(U(ϕ(u))B)

)
= 1−

∑

ϕ∈P

(
1− µU(ϕ(u))x(B)

)

≥ 1− |P|
2|P| =

1

2
.

So, µ
(⋂

ϕ∈P U(ϕ(u))B
)
> c/2 for all u ∈ S.

4.18. It follows that in order to prove Theorem 4.14 it suffices to establish the following
fact: if Y is a proper U -invariant inner factor of X which has the VSZ property, then there
exists a U -invariant inner factor X′ of X satisfying X′ > Y and having the VSZ property.
Indeed, if this were the case, then any maximal element of the family of U -invariant factors
of X having the VSZ property would of necessity coincide with X. Therefore, in light of
Theorem 4.8, it is enough to prove the following proposition:

4.19. Proposition. Let an extension (X,B, µ) −→ (Y,D, ν) be primitive with respect to
U , n and A. If (Y,D, ν) has the VSZ property with respect to U , n and A, then so does
(X,B, µ).

4.20. We will need the following combinatorial fact.

Proposition. Let ϕ1, . . . , ϕk be polynomials V −→ W of formal degree ≤ n, with coeffi-
cients in A ⊆W and with zero constant term. There exist N ∈ N and a finite family Q of
polynomials V N −→ W of formal degree ≤ n, with coefficients in Span(A) and with zero
constant term such that

(i) for any Φ ∈ Q, Ran(Φ) ⊆ Span
(⋃k

i=1 Ran(ϕi)
)
;

(ii) for any partition
⋃r

s=1 Qs = Q there exist s ∈ {1, . . . , r}, Φ ∈ Qs and a nonempty set
α ⊆ {1, . . . , N} such that Φ(v1, . . . , vN ) + ϕi

(∑
t∈α

vt
)
⊆ Qs for all i ∈ {1, . . . , k}.

Proof. For a polynomial ϕ:V −→W with ϕ(0) = 0, let us define ϕ(1) = ϕ and, for m ≥ 2,
ϕ(m):V m −→W by

ϕ(m)(v1, . . . , vm) = ϕ(v1 + . . .+ vm)−
m−1∑

l=1

∑

1≤t1<...<tl≤m

ϕ(l)(vt1 , . . . , vtl).

Then for any m ∈ N, Span
(
Ran(ϕ(m))

)
⊆ Span

(
Ran(ϕ)

)
and

ϕ(v1 + . . .+ vm) =

m∑

l=1

∑

1≤t1<...<tl≤m

ϕ(l)(vt1 , . . . , vtl).

As one easily checks, ϕ(m)(v1, . . . , vm) = Dv1. . . Dvm−1
ϕ(vm) and so, ϕ(m) = 0 for m >

Degϕ. Therefore, if Degϕ ≤ n, we may also write

ϕ(v1 + . . .+ vm) =

n∑

l=1

∑

1≤t1<...<tl≤m

ϕ(l)(vt1 , . . . , vtl).
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Fix N ; we will say momentarily how large it must be. For i ∈ {1, . . . , k} and t =
(t1, . . . , tn) ∈ {1, . . . , N}n, if t1 < t2 < . . . < tm = tm+1 = . . . = tn for some m ≤ n we

define θ({(i, t)}) = ϕ
(m)
i (vt1 , . . . , vtm), and put θ({(i, t)}) = 0 otherwise. θ maps the family

of singleton subsets of {1, . . . , k} × {1, . . . , N}n into the set of polynomials V N −→W (in
variables v1, . . . , vN ). θ may be uniquely extended to a mapping from the power set F
of {1, . . . , k} × {1, . . . , N}n into the set of polynomials V N −→ W in such a way that
θ(γ1 ∪ γ2) = θ(γ1) + θ(γ2) for γ1 ∩ γ2 = ∅. By construction, for any l ∈ {1, . . . , k} and
nonempty α ⊆ {1, . . . , N} we have

θ
(
{i} × αn

)
=

∑

t1,...,tn∈α

θ
(
{(i, (t1, . . . , tn))}

)
=

n∑

l=1

∑

t1,...,tl∈α
t1<...<tl

ϕ
(l)
i (vt1 , . . . , vtl) = ϕi

(∑
t∈α

vt
)
.

Put Q = Ran(θ). Suppose now Q =
⋃r

s=1 Qs. Put Qs = θ−1(Qs). Then
⋃r

s=1Qs =
F . By the polynomial Hales-Jewett theorem (see [BL2]), if N is large enough (depending
on k, n and r), then there exist s ∈ {1, . . . , r}, γ ∈ Qs and a nonempty α ⊆ {1, . . . , N}
such that γ∩

(
{1, . . . , k}×αn

)
= ∅ and γ∪

(
{i}×αn

)
∈ Qs, i = 1, . . . , k. Putting Φ = θ(γ)

we are done.

4.21. In our proof of Proposition 4.19 we may and will assume without loss of generality
that X is a regular space (see [F2], page 103). One then has a decomposition of measures:
for almost every y ∈ Y a measure µy on X is defined (µy “is concentrated” on the fiber
π−1(y)) so that µ =

∫
µy dν. For f ∈ L1(X) and almost all y ∈ Y we then have EY (f)(y) =∫

f dµy.

4.22. To start the proof of Proposition 4.19 we need one more ingredient. It can be
proven (cf. [Z2]) that a Y -unitary action of a group G on a Y -Hilbert space H is compact
relative to Y if and only if H is decomposable into (a possibly infinite) sum of G-invariant
Y -subspaces which have finite rank as L∞-modules. Instead, we will follow the softer
approach suggested in [FK1], which is based on the notion of an almost periodic function.

4.23. Let U be an action of a countable abelian group G on an extension π: (X,B, µ) −→
(Y,D, ν); though it is not necessary, we will assume that X is a regular space. We say that
a function f ∈ L2(X) is almost periodic relative to Y (with respect to U) if for any ε > 0
there exists a finite set R ∈ L2(X), called a fiberwise a.e. ε-net for U(G)f , such that for
any u ∈ G and almost every y ∈ Y there exists g ∈ R with

∥∥U(u)f − g
∥∥
y
< ε.

Proposition. If U is compact on X relative to Y then L2(X) has a dense set of functions
almost periodic relative to Y with respect to U .

Proof. ForH ∈ L∞(X)⊗L∞(X) and g ∈ L2(X) defineH∗g(x) =
∫
H(x, x′)g(x′) dµπ(x)(x

′).
Then g 7→ H ∗ g is a bounded operator on L2(X,µ) and a compact operator on L2(X,µy)
and for almost all y ∈ Y .

Let H = L2(X), let K be the subspace of H ⊗Y H consisting of the U -invariant
functions and let K∞ ⊆ K be the subspace of bounded functions from K. By using the
identity 〈f,H ∗ g〉 = 〈f ⊗ g,H〉, one sees that if 〈f,H ∗ g〉 = 0 for all H ∈ K∞ and all
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g ∈ H then one has 〈f ⊗ f̄ , H〉 = 0 for all H ∈ K∞. Since K∞ is dense in K, this implies
by Theorem 3.27 that U is weakly mixing on f relative to Y and so, f = 0. It follows that
the set

{
H ∗ g : H ∈ K∞, g ∈ H

}
is dense in H, and we need only show that any H ∗ g

may be approximated by an almost periodic function.

Let now G1 ⊆ G2 ⊆ . . . be an exhaustive sequence of finite subsets of G. Fix H ∈ K∞

and g ∈ H, and put f = H ∗ g. For any v ∈ U one has U(v)f = (U(v)H) ∗ (U(v)g) =
H ∗ (U(v)g), and so the set

{
U(v)f : v ∈ G

}
is precompact in the ‖ · ‖y-norm for a.e.

y ∈ Y . For δ > 0 and y ∈ Y let M = M(y, δ) be the minimal positive integer such
that the set

{
U(u)f : u ∈ GM

}
is δ-dense in

{
U(v)f : v ∈ G

}
in the ‖ · ‖y-norm. Next,

for k ∈ N let Mk be large enough that ν
(
{y : M(y, 1k ) > Mk}

)
< 1

2k
. For K ∈ N let

EK = Y \
(⋃∞

k=K+1

{
y : M

(
y, 1k

)
> Mk

})
. Note that ν(EK) ≥ 1 − 2−K . Finally, let

ẼK =
⋃

v∈G U(v)−1EK and let fK = f · 1
ẼK

. Note that for K large, fK approximates f

closely. We claim that h = fK is AP.

To see this, let ε > 0 and let k be large enough that k > K and 1
k < ε. For u ∈ GMk

let hu(x) be equal to f
(
U(u)x

)
if π(x) ∈ EK , zero if π(x) ∈ Y \ ẼK , and for y ∈ ẼK \EK

choose (measurably) vy ∈ G with U(vy)y ∈ EK and set hu(x) equal to f
(
U(vπ(x))U(u)x

)

if π(x) ∈ ẼK \ EK . We claim that {0} ∪
{
hu : u ∈ GMk

}
is a fiberwise a.e. ε-net for h.

Indeed, let v ∈ G and y ∈ Y . First, let y ∈ EK . Then on the fiber over y, h = f ,
hu = U(u)f for u ∈ GMk

, and the set
{
hu : u ∈ GMk

}
is ε-dense in

{
U(v) : v ∈ G

}
with

respect to the ‖ · ‖y-norm. Thus, for some u ∈ GMk
we have

∥∥U(v)h − hu
∥∥
y
< ε. The

complement of ẼK is an invariant set, therefore if y ∈ Y \ ẼK then U(u)h is zero on the

fiber over y. Finally if y ∈ ẼK \ EK then since U(vy)y ∈ EK , for some u ∈ GMk
we have∥∥U(v)U(vy)

−1f − U(u)f
∥∥
U(vy)y

< ε. But this implies that
∥∥U(v)h− hu

∥∥
y
< ε.

4.24. Proposition. If U is compact on X relative to Y , then for any f ∈ H and any
δ > 0 there exists D ⊆ Y with ν(D) > 1− δ such that 1D · f is almost periodic relative to
Y with respect to U .

Proof. Let f ∈ H and let δ > 0 be given. Choose a sequence (εn)
∞
n=1 of positive numbers

such that
∑∞

n=1

√
εn < δ. For every n = 1, 2, . . . choose an almost periodic fn with

‖fn−f‖ < εn and let Rn be a fiberwise a.e. εn-net for U(G)fn. Let Cn =
{
y : ‖fn−f‖y ≥√

εn
}
. Then ν(Cn) <

√
εn, so that D = Y \⋃∞

n=1 Cn satisfies ν(D) > 1− δ.

Now given ε > 0, pick n with 2εn < ε. Let u ∈ G and y ∈ Y . If U(u)y ∈ D then
‖U(u)f−U(u)fn‖y = ‖f−fn‖U(u)y < εn, which implies that there exists g ∈ Rn such that
‖U(u)f − g‖y < ε. If on the other hand U(u)y 6∈ D, then ‖U(u)f − 0‖y = ‖f‖U(u)y = 0.
Hence Rn ∪ {0} is a fiberwise a.e. ε-net for U(G)f .

4.25. Proof of Proposition 4.19. Let L ∈ Λ be the space ensuring the primitivity of the
extension (X,B, µ) −→ (Y,D, ν), as defined in 4.7. Let V be a finite dimensional vector
space over F , let P be a finite family P of polynomials V −→W of formal degree ≤ n, with
coefficients in Span(A) and with zero constant term. Let G be the group of polynomials
V −→ W of formal degree ≤ n and with zero constant term, let G0 =

{
ϕ ∈ G : Ran(ϕ) ⊆

L
}
, and let W be a set of coset representatives for G/G0. Choose ϕ1, . . . , ϕk ∈ W and
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ψ1 = 0, ψ2, . . . , ψl ∈ G0 such that P ⊆
{
ϕi + ψj : 1 ≤ i ≤ k, 1 ≤ j ≤ l

}
. Note that

U(ψ1), . . . , U(ψl) are compact on X relative to Y , while U(ϕi − ϕj), i 6= j, are weakly
mixing on X relative to Y .

Let B ∈ B, µ(B) > 0. By Proposition 4.24 we may assume that f = 1B is almost
periodic relative to Y with respect to U |L. Pick b > 0 and D ∈ D with ν(D) > 0 such that

µy(B) > b for all y ∈ D. Put ε = b2

8l2 . Let {g1, . . . , gr} be a fiberwise a.e. ε-net for U(L)f .
We now apply Proposition 4.20 to the family

{
(ϕi, ψj) : 1 ≤ i ≤ k, 1 ≤ j ≤ l

}

of polynomials V −→ W × W and find N ∈ N and a finite family Q of polynomials
(Φ,Ψ):V N −→W ×W of formal degree ≤ n, with coefficients in Span(A)× Span(A) and

with zero constant term such that for any (Φ,Ψ) ∈ Q, Ran(Ψ) ⊆ Span
(⋃k

j=1 Ran(ψj)
)
⊆ L

and for any partition
⋃r

s=1 Qs = Q there are s ∈ {1, . . . , r}, (Φ,Ψ) ∈ Q and a nonempty
α ⊆ {1, . . . , N} such that

(
Φ(v1, . . . , vN ) + ϕi

(∑
t∈α

vt
)
,Ψ(v1, . . . , vN ) + ψj

(∑
t∈α

vt
))

∈ Qs

for all i ∈ {1, . . . , k}, j ∈ {1, . . . , l}.

Since (Y,D, ν) has the VSZ property, there exists d > 0 such that the set

S =
{
v ∈ V N : ν

( ⋂

(Φ,Ψ)∈Q

U
(
Φ(v) + Ψ(v)

)
D
)
> d

}

is syndetic. We put c = bkd
2k+N+1r|Q| .

Let T ⊆ V be an arbitrary thick set. For u ∈ T put

Cu =
{
y ∈ Y :

∣∣∣µy

( k⋂

i=1

l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)

−
k∏

i=1

µy

( l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)∣∣∣ >

bk

2k−1

}

=
{
y ∈ Y :

∣∣∣
∫ k∏

i=1

l∏

j=1

U
(
−ϕi(u)− ψj(u)

)
f dµy

−
k∏

i=1

∫ l∏

j=1

U(−ϕi(u)− ψj(u))f dµy

∣∣∣ >
bk

2k−1

}
.

By Theorem 4.9 the set C =
{
u ∈ V : ν(Cu) <

d
2N+1|Q|

}
has Banach density 1. By

Lemma 2.7(vi), T ′ = T ∩ C is thick. Utilizing Lemma 2.8, fix v = (v1, . . . , vN ) ∈ S such
that FS

(
{v1, . . . , vN}

)
⊂ T ′. Let

D1 =
( ⋂

(Φ,Ψ)∈Q

U
(
Φ(v) + Ψ(v)

)
D
)
\
( ⋃

(Φ,Ψ)∈Q

⋃

u∈FS({v1,...,vN})

U
(
Φ(v) + Ψ(v)

)
Cu

)
.
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Then ν(D1) >
d
2 .

For y ∈ D and s ∈ {1, . . . , r} let

Qy,s =
{
(Φ,Ψ) ∈ Q :

∥∥U(−Ψ(v))f − gs
∥∥
U(−Φ(v))y

< ε
}
;

then
⋃r

s=1 Qy,s = Q for a.e. y ∈ Y . By the choice of Q, for a.e. y ∈ Y there exist
s ∈ {1, . . . , r}, (Φ,Ψ) ∈ Q and a nonempty α ∈ {1, . . . , N} such that for u =

∑
t∈α vt ∈

FS({v1, . . . , vN}) one has
(
Φ(v) + ϕi(u),Ψ(v) + ψj(u)

)
∈ Qy,s, that is,

∥∥U
(
−Ψ(v)− ψj(u)

)
f − gs

∥∥
U(−Φ(v)−ϕi(u))y

< ε (4.5)

for all i = 1, . . . , k, j = 1, . . . , l. Since there are at most 2Nr|Q| choices for α, s and (Φ,Ψ),
we may find a set D2 ⊆ D1 with ν(D2) >

d
2N+1r|Q| such that (4.5) holds for some α, s and

(Φ,Ψ) not depending on y ∈ D2. We fix these α, s and (Φ,Ψ).
For y ∈ D2, let ỹ = U

(
−Φ(v)−Ψ(v)

)
y. By (4.5),

∥∥U
(
−ϕi(u)− ψj(u)

)
f − U

(
−ψj(u) + Ψ(v)

)
gs
∥∥
ỹ
< ε

for all i = 1, . . . , k, j = 1, . . . , l. Since ψ1 = 0, this implies

∥∥U
(
−ϕi(u)− ψj(u)

)
f − U(−ϕi(u))f

∥∥
ỹ
< 2ε,

which is equivalent to

µỹ

(
U
(
ϕi(u) + ψj(u)

)
B△U(ϕi(u))B

)
<

√
2ε.

It follows that for all i = 1, . . . , k,

µỹ

( l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
> µỹ(B)− l

√
2ε.

By construction of ỹ and D1, ỹ ∈ D. Therefore µỹ(B) > b and so,

µỹ

( l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
> b− l

√
2ε =

b

2

for all i = 1, . . . , k. Hence,

k∏

i=1

µỹ

( l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
>
bk

2k
.
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On the other hand, ỹ 6∈ Cu, hence

∣∣∣µỹ

( k⋂

i=1

l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
−

k∏

i=1

µỹ

( l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)∣∣∣ <

bk

2k−1
.

We therefore have

µỹ

( k⋂

i=1

l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
>

bk

2k−1
− bk

2k
=
bk

2k
.

Finally, as this holds for all ỹ ∈ U
(
−Φ(v)−Ψ(v)

)
D2 and ν(D2) ≥ d

2N+1r|Q| , we have

µ
( k⋂

i=1

l⋂

j=1

U
(
ϕi(u) + ψj(u)

)
B
)
>

bkd

2k+N+1r|Q| = c.

Since P ⊆
{
ϕi + ψj : 1 ≤ i ≤ k, 1 ≤ j ≤ l

}
, this implies

⋂
ϕ∈P U

(
ϕ(u)

)
B
)
> c.

Since u was chosen from an arbitrary thick set T , we have shown that the set
{
u ∈ V :

µ
(⋂

ϕ∈P U
(
ϕ(u)(u)

)
B
)
> c

}
is syndetic.

5. Applications of main theorem

5.1. In this chapter we derive some combinatorial corollaries from our main theorem. We
start by formulating a version of Furstenberg’s correspondence principle, which serves as
a bridge between multiple recurrence and density combinatorics:

Theorem. (Cf. [F2], page 152, and [B2], Theorem 4.17.) Given an abelian group G and
E ⊆ G, there exist a probability space (X,B, µ), a set A ⊆ B with µ(A) = d∗(E) and a
measure preserving action U of G on X such that for any k ∈ N and any v1, . . . , vk ∈ G
one has d∗

(
E ∩ (E + v1) ∩ . . . ∩ (E + vk)

)
≥ µ

(
A ∩ U(v1)A ∩ . . . ∩ U(vk)A

)
.

5.2. The following combinatorial statement now follows immediately from Theorem 4.14
and the correspondence principle:

Theorem. Let F be a countable field, let V and W be finite dimensional vector spaces
over F and let P be a finite family of polynomials V −→W with zero constant term. For
any E ⊆ W with d∗(E) > 0 there exist u ∈ V , u 6= 0, and w ∈ E such that w + ϕ(u) ∈ E
for all ϕ ∈ P. Moreover, the set of u which satisfy w + ϕ(u) ∈ E for some w ∈ E and all
ϕ ∈ P is syndetic in V .
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5.3. As a matter of fact, one may derive from Theorem 5.2 a somewhat weakened form
of Theorem 4.14, omitting reference to c and establishing syndeticity of the set

{
u ∈ V :

µ
(⋂

ϕ∈P U(ϕ(u))B
)
> 0

}
, by arguing as follows. Let B ∈ B with µ(B) > 0 and let T be a

thick subset of V . Then for almost all x ∈ B the set Ex =
{
w ∈W : x ∈ U(w)B

}
satisfies

d∗(Ex) > 0. By Theorem 5.2, there exist wx ∈ Ex and ux ∈ T such that wx + ϕ(ux) ∈ Ex

for all ϕ ∈ P, so that x ∈ U(wx)B and x ∈ U(ϕ(ux))U(wx)B for all ϕ ∈ P. Choose
u′ ∈ T and w′ ∈ W such that the set C =

{
x ∈ X : ux = u′ and wx = w′

}
has positive

measure. Then as U(w′)C ⊆ U(ϕ(u′))B for all ϕ ∈ P, one has evidence in u′ that T meets{
u ∈ V : µ

(⋂
ϕ∈P U(ϕ(u))B

)
> 0

}
, which by virtue of the fact that T is an arbitrary thick

set, must be syndetic.

5.4. The following is a “finitary” version of Theorem 5.2.

Corollary. Let P be a finite family of polynomials V −→W with zero constant term and
let {Φn} be a Følner sequence in W . For any α > 0 there exists N ∈ N such that whenever
n ≥ N and E ⊆ Φn with |E| ≥ α|Φn|, there exist u ∈ V , u 6= 0, and w ∈ E such that
w + ϕ(u) ∈ E for all ϕ ∈ P.

Proof. Artificially enlarging P if necessary, we may assume that 0 ∈ P and that |P| ≥ 3.
Supposing the conclusion fails, we choose En ⊆ Φn, |En| > α|Φn|, n ∈ N, not containing
any {w + ϕ(u) : ϕ ∈ P}, u 6= 0. Having chosen wi ∈W , i = 1, . . . , n− 1, let

Bn =
{
u ∈ V : there exist ϕ1, ϕ2 ∈ P with

ϕ1(u)− ϕ2(u) ∈
(⋃n−1

i=1 (wi + Ei)−
⋃n−1

i=1 (wi + Ei)
)
∪ (En − En)

}
.

Note that Bn is finite. Choose wn outside the (finite) set

⋃n−1
i=1 (wi + Ei)−

{
ϕ(u) : u ∈ Bn, ϕ ∈ P

}
+

{
ϕ(u) : u ∈ Bn, ϕ ∈ P

}
− En.

Again E =
⋃∞

i=1(wn + En) satisfies d
∗(E) ≥ α, so E contains a configuration {w + ϕ(u) :

ϕ ∈ P}, u 6= 0. Let ϕ1, ϕ2, ϕ3 be distinct members of P and suppose there are w ∈W , 0 6=
u ∈ V and l ≤ m ≤ n with w+ϕ1(u) ∈ wl+El, w+ϕ2(u) ∈ wm+Em, w+ϕ3(u) ∈ wn+En.
One checks that necessarily u ∈ Bn, hence it cannot be the case that m < n or l < m = n,
as in either of these cases we would have w ∈ ⋃n−1

i=1 (wi + Ei) −
{
ϕ(u) : u ∈ Bn, ϕ ∈ P

}

and wn ∈ w + {ϕ(u) : u ∈ Bn, ϕ ∈ P} − En, a contradiction. Hence l = m = n and, as
the ϕ1, ϕ2, ϕ3 were arbitrary members of P, in fact

{
w + ϕ(u) : ϕ ∈ P

}
⊆ wn + En, a

contradiction.

5.5. We will now extend our multiple recurrence theorems from vector spaces to modules
over integral domains. Let K be a ring and let M be a module over K; we call a mapping
ϕ:Kd −→M a polynomial if it has the form ϕ(x1, . . . , xd) =

∑k
i=1 x

ni,1

1 . . . x
ni,d

d ai, ai ∈M .

Theorem. Let K be a countable integral domain, letM be a K-module, let U be a measure
preserving action of M on a probability measure space (X,B, µ) and let P be a finite family
of polynomials K −→ M with zero constant term. For any B ∈ B with µ(B) > 0 there
exists u ∈ K, u 6= 0, such that µ

(⋂
ϕ∈P U(ϕ(u))B

)
> 0.
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5.6. The following is an equivalent combinatorial version of Theorem 5.5. (One can es-
tablish the equivalence with the help of the correspondence principle and by an argument
similar to that used in 5.3.)

Theorem. Let K be a countable integral domain, let M be a K-module and let P be
a finite family of polynomials K −→ M with zero constant term. For any E ⊆ M with
d∗(E) > 0 there exist u ∈ K, u 6= 0, and w ∈ E such that w + ϕ(u) ∈ E for all ϕ ∈ P.

5.7. We will be proving the finitary version of Theorem 5.6:

Theorem. Let K be a countable integral domain, let M be a K-module, let P be a finite
family of polynomials K −→M with zero constant term and let {Φn} be a Følner sequence
in M . For any α > 0 there exists N ∈ N such that whenever n ≥ N and E ⊆ Φn with
|E| ≥ α|Φn|, there exist u ∈ K, u 6= 0, and w ∈ E such that w + ϕ(u) ∈ E for all ϕ ∈ P.

Proof. Denote by F the field of quotients of K. Let P = {ϕ1, . . . , ϕk} , where ϕi(x) =∑di

j=1 x
jai,j , ai,j ∈ M . We put W = F d1+...+dk and R = Kd1+...+dk ⊆ W . Let ζ be the

homomorphism R −→ M defined by ζ(v) =
∑k

i=1

∑di

j=1 vi,jai,j for v = (v1,1, . . . , vk,dk
).

We define polynomial mappings π1, . . . , πk:F −→ W by
(
πi(u)

)
l,j

=

{
uj if i = l
0 otherwise.

Then

πi(K) ⊆ R and ζ ◦ πi = ϕi, i = 1, . . . , k.

Let G be a countable abelian group and let v1, . . . , vr ∈ G. For each l = 1, . . . , r,
if 〈vl〉 ∩ 〈v1, . . . , vl−1〉 6= {0} let Nl be the minimal positive integer for which Nlvl ∈
〈v1, . . . , vl−1〉, and let Nl be an arbitrary positive integer otherwise. We will call a set
P ⊆ G of the form P =

{
n1v1 + . . . + nrvr : nl ∈ {0, 1, . . . , Nl − 1}, l = 1, . . . , r

}

an admissible parallelepiped. One can check that there always exists a Følner sequence
consisting of admissible parallelepipeds, and that the following holds:

5.7.1. Lemma. Given a Følner sequence {Ψn}, a admissible parallelepiped P in G and
β > 0, for any n large enough there exist w1, . . . , wm ∈ Ψn such that

⋃m
j=1(wj +P ) ⊆ Ψn,

(wi + P ) ∩ (wj + P ) = ∅ for i 6= j and
∣∣⋃m

j=1(wj + P )
∣∣ > (1− β)|Ψn|.

Sketch of the proof. Let H = 〈v1, . . . , vr〉 and let Z ⊂ G be a set of representatives of
G/H. Let Y =

{
z + k1N1v1 + . . .+ krNrvr : z ∈ Z, k1, . . . , kr ∈ Z

}
. Then

⋃
w∈Y (w + P )

is a partition of G. Let Yn =
{
w ∈ Y : w + P ⊆ Ψn

}
; if n is large enough then{

w ∈ Ψn : w ± P ⊆ Ψn

}
≈ Ψn and so,

⋃
w∈Yn

(w + P ) ≈ Ψn.

Let {Qn} be a Følner sequence of admissible parallelepipeds inW . Using Corollary 5.4,
find n such that whenever C ⊆ Qn with |C| ≥ α

2 |Qn|, there exist u ∈W , u 6= 0, and w ∈ C
such that w + π1(u), . . . , w + πk(u) ∈ C. Let h ∈ K be such that hw ∈ R for all w ∈ Qn,
and such that hu ∈ K for all u ∈ F having the property that πi(u) = Qn − Qn for
all i = 1, . . . , k. Define η:W −→ R by

(
η(v)

)
i,j

= hjvi,j , i = 1, . . . , k, j = 1, . . . , di,

v = (v1,1, . . . , vk,dk
); then η

(
πi(v)

)
= πi(hv), v ∈W , i = 1, . . . , k.

Define Q = η(Qn); since η is injective, Q is a admissible parallelepiped in R. Assume
that D ⊆ Q, |D| ≥ α

2 |Q|. Then C = η−1(D) ⊆ Qn and |C| ≥ α
2 |Q|. Thus there exist

u ∈ F , u 6= 0, and w ∈ C such that w + πi(u) ∈ C for all i = 1, . . . , k. Since w ∈ Qn,
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one has hw ∈ R. Since πi(u) ∈ Qn − Qn, i = 1, . . . , k, one has hu ∈ K. Finally we have
η(w) ∈ D and η

(
w + πi(u)

)
= η(w) + πi(hu) ∈ D for all i = 1, . . . , k.

Let L = Ran ζ; choose a Følner sequence {Pn} of admissible parallelepipeds in L.
Choose a Følner sequence {Ψ′

m} in ker(ζ) and a (not necessarily homomorphic) section
τ :L −→ R of ζ.

We will now use the following simple lemma:

5.7.2. Lemma. There exists a sequence {mn} of positive integers such that Ψn = τ(Pn)+
Ψ′

mn
, n ∈ N, is a Følner sequence in R.

Let {Φn} be a Følner sequence in M . Define {Ψn} as in Lemma 5.7.2 and let, in
accordance with Lemma 5.7.1, i and v1, . . . , vm ∈ Ψi be such that v1+Q, . . . , vm+Q ⊆ Ψi,
the sets vj+Q are pairwise disjoint and

∣∣⋃m
j=1(vj+Q)

∣∣ >
(
1− α

4

)
|Ψi|. Once again applying

Lemma 5.7.1, find N such that for any n ≥ N there exist w1, . . . , wl ∈ Φn for which
w1 + P1, . . . , wl + Pl ⊆ Φn, the sets wj + Pi are pairwise disjoint and

∣∣⋃l
j=1(wj + Pi)

∣∣ >(
1− α

4

)
|Φn|.

Now let n ≥ N and E ⊆ Φn with |E| ≥ α|Φn|. Then for some w = wj ,
∣∣E∩(w+Pi)

∣∣ >
3α
4 |Pi|. Putting D = ζ−1

(
(E−w′′)∩Pi

)
we have |D| ≥ 3α

4 |Ψi|, thus
∣∣D∩ (v+Q)

∣∣ ≥ α
2 |Q|

for some v = vj ∈ Ψi, so
∣∣(D − v) ∩Q

∣∣ ≥ α
2 |Q|. We can therefore find u ∈ K, u 6= 0, and

v′ ∈ (D − v) such that v′ + πi(u) ∈ (D − v) for all i = 1, . . . , k. It follows that v′ + v ∈ D
and (v′ + v) + πi(u) ∈ D for all i = 1, . . . , k. Hence, w + ζ(v′ + v) ∈ E and

w + ζ
(
v′ + v + πi(u)

)
= w + ζ(v′ + v) + ζ(πi(u)) = w + ζ(v′ + v) + ϕi(u) ∈ E,

i = 1, . . . , k.

5.8. Corollary of the proof. Let M be a module over a countable integral domain K.
For any k, d ∈ N and α > 0 there exists a finite set J ⊂ K, 0 6∈ J , such that, whenever
ϕ1, . . . , ϕk are polynomials K −→M of formal degree ≤ d having zero constant term, and
E ⊆M with d∗(E) ≥ α, there exist u ∈ J and w ∈ E such that w+ϕ1(u), . . . , w+ϕk(u) ∈
E.

Indeed, in the proof of Theorem 5.7 u is chosen from a finite set, which depends only on
d1, . . . , dk and α.

5.9. An equivalent “ergodic” statement is

Theorem. Let M be a module over a countable integral domain K. For any α > 0
and k, d ∈ N, there exists a finite set J ⊂ K, 0 6∈ J , and δ > 0 such that for any
measure preserving action U of M on a probability measure space (X,B, µ), polynomials
ϕ1, . . . , ϕk:K −→ M of formal degree ≤ d and with zero constant term and B ∈ B with
µ(B) ≥ α there exists u ∈ J such that µ

(⋂k
i=1 U(ϕi(u))B

)
> δ.
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Proof. One need only to modify slightly the argument given in 5.3. By ergodic decom-

position, there exists a subset B′ ⊆ B such that µ(B′) ≥ µ(B)
2 having the property that

d∗(Ex) ≥ µ(B)
2 for x ∈ B′. Choose J from Corollary 5.8 (with α = µ(B)

2 ). For all x ∈ B′

there exist wx ∈ Ex and ux ∈ J such that wx+ϕi(ux) ∈ Ex, i = 1, 2, . . . , k, hence for some

fixed u ∈ J , µ
(
{x ∈ B′ : ux = u}

)
≥ µ(B)

2|J| . It follows that µ
(⋂k

i=1 U(ϕi(u))B
)
≥ µ(B)

2|J| = δ.

5.10. We may also restate Theorem 5.6 in a more geometric form (cf. Theorem PSZ from
the introduction):

Theorem. Let K be a countable integral domain, let M be a K-module and let ϕ be a
polynomial Kd −→ M with ϕ(0) = 0. For any finite set Z ⊂ Kd and any E ⊆ M with
d∗(E) > 0 there exist u ∈ K, u 6= 0, and w ∈ E such that w + ϕ(uZ) ⊂ E.

Indeed, it suffices to apply Theorem 5.6 to the set
{
ϕz(u) = ϕ(uz), z ∈ Z

}
of polynomials

K −→M .

5.11. In Theorem 5.6 one would like to know “how many” u ∈ K satisfy the conclusion of
the theorem. Our proof of Theorem 5.6 does not allow us to guarantee that such u form
a syndetic set in K, but nevertheless we can show that, in a sense, this set is large:

Theorem. Let K be a countable integral domain, let M be a K-module and let ϕ1, . . . , ϕk

be polynomials K −→ M with zero constant term. For any E ⊆ M with d∗(E) > 0 and
any Følner sequence {Φn} in K there exists r ∈ K such that the set

S =
{
u ∈ K : there exists w ∈ E such that w + ϕi(u) ∈ E, i = 1, . . . , k

}

has positive upper density with respect to the Følner sequence {rΦn} in the ideal rK.

Proof. Given a ∈ K, consider the polynomials ϕ′
i(x) = ϕi(ax), i = 1, . . . , k. By

Corollary 5.8, there exists a finite set J ⊂ K, which does not depend on a, such that
ϕ(au) + w = ϕ′

i(u) + w ∈ E for some u = u(a) ∈ J and w ∈ E. Let r ∈ J be such that
the set P =

{
a ∈ K : u(a) = r

}
has positive upper density with respect to {Φn}. Then

rP ⊆ S and has positive upper density with respect to {rΦn}.
In particular, S is infinite. If K has the property that any of its principal ideals has finite
index (which is the case, for example, when K = Z or K = F [x], where F is a finite field),
then S has positive upper Banach density in K.

5.12. One more question arising in connection with Theorem 5.6 is whether one can get
“nontrivial” configurations of the form {w,w + ϕ1(u), . . . , w + ϕk(u)} in E. Indeed, the
condition u 6= 0 does not guarantee yet that ϕi(u) 6= 0 in M . In some situations the
existence of a nontrivial configuration is clear: if, say, M is a free module, the polynomials
ϕ1, . . . , ϕk have only finitely many roots, whereas the set S of those u which satisfy the
conclusion of the theorem is infinite by Theorem 5.11.

5.13. We will now derive a couple of corollaries from Theorem 5.7. (The first one was
proved in [BL1], the second one is new.)
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Corollary. Let P be a finite family of polynomials with integer coefficients and zero
constant term. For any α > 0 there exists C ∈ N such that whenever p ∈ N, p ≥ C, and
E ⊆ {1, . . . , p}, |E| ≥ αp, there exist u ∈ {1, . . . , p} and w ∈ E such that w + ϕ(u) ∈ E
for all ϕ ∈ P.

5.14. Corollary. Let K be a countable or finite integral domain and let P be a finite
family of polynomials over the ring K[x] with zero constant term. For any α > 0 there
exists d ∈ N such that whenever E ⊆ K with d∗(E) ≥ α there exist u ∈ K, u 6= 0,
deg u ≤ d, and w ∈ E such that w + ϕ(u) ∈ E for all ϕ ∈ P.

5.15. We conclude the paper by formulating some new applications to finite fields.

Theorem. Let L be a finite field, let P be a finite family of polynomials over L with
zero constant term and let α > 0. There exists m ∈ N such that whenever F is a finite
extension of L with |F | ≥ m and E ⊆ F with |E| ≥ α|F |, there exist u ∈ F , u 6= 0, and
w ∈ E such that w + ϕ(u) ∈ E for all ϕ ∈ P.

Proof. Any finite extension of L has the form F = L[x]/(v), where v ∈ L[x] is an irre-

ducible polynomial. We have |F | = |L|deg v
; assume that |F | > |L|d, where d is the constant

from Corollary 5.14. Then deg v > d. Let π be the factorization mapping L[x] −→ F .
If E ⊆ F with |E| ≥ α|F |, then d∗(π−1(E)) ≥ α and so, by Corollary 5.14, there exist
u′ ∈ L[x], u′ 6= 0 and deg u′ ≤ d, and w′ ∈ π−1(E) such that w′ + ϕ(u′) ∈ π−1(E) for all
ϕ ∈ P. Since deg u′ ≤ d < deg v, u′ 6∈ (v), so π(u′) 6= 0. Hence, u = π(u′) and w = π(w′)
satisfy the conclusion of the theorem.

5.16. Combining Theorem 5.15 and Corollary 5.13, we get:

Theorem. Let P be a finite family of polynomials with integer coefficients and zero
constant term and let α > 0. There exists N ∈ N such that whenever F is a field with
|F | ≥ N and E ⊆ F with |E| ≥ α|F |, there exist u ∈ F , u 6= 0, and w ∈ E such that
w + ϕ(u) ∈ E for all ϕ ∈ P.

Proof. Let C be the constant from Corollary 5.13, let {p1 = 2, p2 = 3, . . . , pk} be the
set of all prime numbers < C, and for each pi, i = 1, . . . , k, let mi be the number whose
existence is guaranteed by Theorem 5.15 for L = Zpi

. Now let F be a finite field with
|F | ≥ max{m1, . . . ,mk} and let E ⊆ F with |E| ≥ α|F |. If p = charF ≥ C, partition
F =

⋃r
j=1 Jj , where Jj are cosets of Zp ∈ F . Then for one of these cosets one has |Jj∩E| ≥

α|Jj |, and the existence of the desired u ∈ Zp and w ∈ E follows from Corollary 5.13 in
this case. If charF < C, the existence of u and w follows from Theorem 5.15.
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