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A b s t r a c t  

We prove that if X is a compact space and T1,. . . ,  Tt are homeomorphisms of 
X generating a nilpotent group, then there exist x E X and nl, n2, . . .  E N 
such that "'~ T. x * x f o r e a c h j = l ,  . ,t .  

3 rn--* oo ~ ~ 

O. I n t r o d u c t i o n  

0.1. In 1978 H. Furstenberg and B. Weiss ([FW]) published a topological 
theorem generalizing Birkhoff's recurrence theorem and having interesting 
combinatorial corollaries (in particular, van der Waerden's theorem about 
ari thmetic progressions). Here is one of its formulations (Birkhoff's theorem 
corresponds to the case t = 1): 

T H E O R E M .  Let X be a compact metric space and let F be a commutative 
group of homeomorphisms of X;  let T1 , . . . ,  Tt E F. Then there exist x E X 
a n d n l , n 2 , . . . E N s u c h t h a t T ~ ' x  ~ x f o r e a c h j = l , . . . , t .  

m - " ~  O 0  

A simple example due to Furstenberg shows that  the s ta tement  is not, 
generally speaking, valid when the assumption that  F is commutat ive is 
omit ted (see, for example, [F, p. 40]). In Furstenberg's example, the group 
F is solvable and, moreover, metabelian (its commuta tor  is abelian). 

0.2. In the dissertation of D. Hendrick ([H]), the following conjecture, due 
to S. Yuzvinsky, was formulated: the multiple recurrence theorem, Theo- 
rem 0.1, holds true for F nilpotent. The work of Hendrick demonstrates  
that  this is so in some special cases. 
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0.3. In this paper we confirm the conjecture of Yuzvinsky. Our proof 
follows in general that of Furstenberg and Weiss, or its modification in 
[B1PT]. The main difference is that  we use the so-called PET-induct ion 
process instead of the ordinary one (on the number t of homeomorphisms 
under consideration). 

This induction was introduced by V. Bcrgelson in [B]. The author in- 
vestigated there sequences of transformations (of probability spaces) of the 
form T P(n), where T is a (measure preserving weakly mixing) transforma- 
tion and p is a polynomial with rational coefficients taking on integer values 
on the integers. One can see from the equality 

(TIT2) n = T~T~[T,,T~] "~-~) in r/[[r,r],r], T1,T2 e r ,  
how such polynomial exponents arise in a natural way when a group F is 
noncommutative.  

0.4. As a mat ter  of fact, we prove the following "polynomial" generaliza- 
tion of Yuzvinsky's conjecture: 

THEOREM.  Let  (X,  p) be a compact metric space, let F be a nilpotent 
group of  i ts  homeomorphisms,  let T1 , . . . , T~  E F, let k E N and let Pi,j, 
i -- 1 , . . . ,  k, j = 1 , . . . ,  t, bepolynomiMs with rationa/coefficients taking on 
integer values at the integers and zero at zero. Then there exist x E X and 

n l , n 2 , . . . E N s u c h t h a t T ~ ' l ( n ' ~ ) . . . T ~ " ( ' ~ ' ~ ) x  ~ x f o r e a c h i =  l , . . . , k .  

The special case of this theorem corresponding to commutative F is 
proved in [BL]. 

0.5. In the first section we give some technical definitions concerning 
nilpotent groups. In the second section we describe the PET-induction 
used in section 3, where we prove our main result, Theorem 2.2. Theorem 
0.4 is a simple corollary of this theorem, this is shown in 4.1. In section 4 we 
give, in addition, some natural corollaries of this theorem and, in particular, 
its combinatorial equivalent, Corollary 4.3. 

A c k n o w l e d g e m e n t .  I am very grateful to Prof. V. Bergelson for his guid- 
ance and help during my work on this paper. I thank also Prof. H. ~-~ursten- 
berg, Prof. V.Ya. Lin and Prof. D. Hendrick for reading this manuscript 
and giving helpful advice. 

1. F-polynomials 

F will always denote a finitely generated nilpotent group without torsion 
(since every nilpotent group is a factor of a nilpotent group without torsion, 
we may assume this without loss of generality). 
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1.1. All the information about nilpotent groups which we need is contained 
in the following proposition (see, for example, [KM]): 

T H E O R E M .  Let F be a finitely generated nilpotent group without torsion. 
Then there exists a set of elements {S1 , . . . ,  Ss } of F (the so called, "Malcev 
basis") such that: 
1. for any 1 _~ i < j _< s, [Si, Sj] belongs to the subgroup of F generated 

by $1,..., Si-x; 
2. every element T of F can be uniquely represented in the form 

T = r I  S~. AT) , rj(T) E Z, j = X , . . . , s  ; 
j----1 

the mapping r : r  ---* Z s, r(T) = ( r l ( T ) , . . . , r s ( T ) ) ,  being polynomial 
in the following sense: there exist polynomial mappings R: Z 2~ --* Z ~, 
R~: Z 8+1 ---. Z ~ such that, for any T, T ~ E F and any n E N, 

r(TT')  = R(r(T) ,r (T ' ) )  , r (T  ~) = R ' ( r (T) ,n)  . 

1.2. Let us introduce some technical terms. We fix from now on a Malcev 
basis {$1 , . . . ,  Ss} of F. 

An integral polynomial is a polynomial taking on integer values at the 
integers. 

The group PF is the minimal subgroup of the group F z of the mappings 
l -* F which contains the constant mappings and is closed with respect 
to raising to integral polynomials powers: if g, h E PF and p is an integral 
polynomial, then gh E PF, where gh(n) = g(n)h(n), and gP E PF, where 
gP(n) = g(n) p(n). The elements of PF are called F-polynomials. F itself is 
a subgroup of PF  and is presented by the constant F-polynomials. 

F-polynomials taking on the value l r  at zero form a subgroup of PF; 
we denote it by PF0 : PF0 = {g E PF : g(0) = l r } .  Note that  the F- 

polynomials T~ ' l (n ) . . .T~  ~''(n), i = 1, . . .  ,k, arising in the formulation of 
Theorem 0.4 belong to PF0. 

1.3 LEMMA. Every F-polynomial g can be uniquely represented in the form 

8 

g(n) = H S~ '('~) ' 
j = l  

where Pi axe integral polynomials. 

The proof is evident from the inductive definition of F-polynomials: if 
g, h E PF  can be represented in such a form and p is an integral polynomial, 
Theorem 1.1 shows that  gh and gP also can. 
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1.4 Remark: Define the differentiation with step a E Z as the mapping 
D~ : F z --* F z acting by the rule D~(g)(n) = g ( n ) - l g ( n  + a). h primitive 
o f g  E F z with step a E Z i s  h E F z such that  D~(h) = g. It is readily 
checked that  the group of F-polynomials PF is the minimal  subgroup of F z 
closed with respect to taking primitives (recall that  F is assumed nilpotent). 
We shall not use this fact in the sequel. 

s .qp~(n) 
1.5. The weight, w(g), of a F-polynomial g, 9(n) = 1-Ij=l ~,j , is the 
pair (/,d), l E { 0 , . . . , s } ,  d E 7+, for which pj -- 0 for any j > l and, if 
1 ~ 0, then Pt # 0 and deg(pt) = d. A weight (l, d) is greater than  a weight 
( k , c )  if  I > k or l = k,  d > c. 

EXAMPLE: The F-polynomial S~5+2n2+3S~ (~+~)+1 has weight (2,7), the 

F-polynomial S ~ + 7 S ~  +~5 has weight (4, 1) which is greater than  (2, 7). 

1.6. The ordering described in 1.5 defines a well ordered structure on the 
set W of all weights; the set (I) of functions W --* Z+ having finite support  
also gets an ordering: 

for ~1, ~P2 E (I) , ~1 ~" ~2 if there exists w 6 W such that  

~l(W) > ~2(w) and ~l(W t) = ~2(w t) Vw t > w 

and is well ordered with respect to it. 

Let us write down functions ~: W --* Z+ with finite supports in the form 
of a list (~ (Wl )Wl , . . . , ~ (wp)wp) ,  where Wl > . . .  > wp and ~0(w) = 0 for 
w ~ { w l , . . . ,  wp}. Then,  for aq # bq, 

( a l W l , . . . , a q - l W q - l , a q W q , . . . ,  a p w p  )N-(  a l  W l  , . . . , a q _ l  W q - 1 ,  b q w q ,  . . . , b p w p )  

if and only if aq > bq. 

a (n~ -  l[~ S pan) 1.7. Let us now define an equivalence relation on PF: 9, - .  , -  , , j = l  j , 
.qqj(n) 

is equivalent to h, h(n) = l-Ij=l ~'j , if w(g) = w(h) and, if it is (l,d), 
the leading coefficients of the polynomials pt and qz coincide; we write then 
g ~ h. The weight of an equivalence class is the weight of any of its elements. 

q, nl~176 +2nla +4 r  ~5n12.(-Znll  +8n l~  EXAMPLE: q ' n ~ h n a 2 + n + 3  is equivalent to ~'1 "2 "3 �9 Wl *-'3 
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2. Systems and the PET-induction 

2.1. A system is a finite subset of PP. 
For every system A we define its weight vector 7~(A) E 4: 

I the number of the equivalence classes 
~o(A)(w) = of weight w which contain elements of A. 

(in the notation of 1.5 and 1.7). 
A system A r precedes a system n if 7~(A) ~- ~o(A'). 

1~13n+l~6n2+2 ~7n2+7n EXAMPLE: The weight vector of the system 1~,1 ~'1 ,'-'1 , 
~7n2+4 ~,4n4--9~,n2+2 ~na+12~n2+2n ~25n25+3na~2na+3n--8 ~8na~ 

1 ~"1 ' '2  ,'-'1 "-'2 ,'-'1 "2  ~"1 '-'2 , 
S~ s+2"+2, S~5+5S~ s+2"2+3 } is (1(1,1), 2(1,2), 1(2, 2), 2(2, 3)). 

2.2. A system A is called a system of recurrence if for any compact topo- 
logical space X provided with a continuous action of F and minimal with 
respect to this action, and any open U _C X there exist n E IN such that  

( N r 
gEA 

We shall prove the following topological version of Theorem 0.4. 

THEOREM.  Every system contained in PF0 is a system of recurrence. 

2.3. The PET-induction we use in the proving of Theorem 2.2 is an 
induction along the well ordered set ~ of the weight vectors. That  is, we 
shall show that  a system A C PF0 is a system of recurrence assuming that  
all the systems preceding A and contained in PF0 are systems of recurrence. 

The beginning of the induction process is clear: the system of minimal 
(zero) weight contained in PF0 consists only of the identity, and the state- 
ment  is trivial for this system. The following lemma (or, more exactly, its 
corollary) is the main tool used in the PET-induction. 

2.4 LEMMA. Let g be a F-polynomial. 
(i) H h is a F - polynomial and g' = h - l  g h, then g' ~" g. 

(ii) I f  m E IN and g' is defined by g'(n) = g- l (m)g(n  + m), then g' ~ g. 
(iii) a) i fg ' ,  h are r-polynomiaIssuch that g' ~ g, h r g and w(h) < w(g), 

the= C h - '  ~ gh -1 and w(gh -1) = 
b) Ifh # l r  isaF-polynomialsuch that h ~ g, then w(gh -~) < w(g). 
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Proof: For every i = 0 , . . . ,  s, denote by Fi the subgroup of Fgene ra t ed  by 
$1, . . . ,  Si. 

Let g(n) = O(n)S~ (n), O(n) E Fi-1 Vn e Z, and let p # 0 be an integral 
polynomial; then w(g) = (i, deg(p)). 

(i) Here 

g ' ( . )  = h ( . ) - l g ( n ) h ( . )  = ( [ h ( . ) , g ( . ) - l l ~ ( . ) ) S ~  (") 

Since, by i tem 1 of Theorem 1.1, [F, Fi] C_ Fi-1,  the expression in the large 
parentheses belongs to Fi-1 for any n E l ;  hence, g~ ,,, g. 

(ii) Here 

gt(n) "~ g - l (m)g ( .  + m) = STP(rn) g(m)- l  g('12 + m)S p(n'Frn) 

= ( [ s~(m) ,~(~  + m)-l~(m)l~-'(m)~(~ + m))s~ (n+m)-p(~) v .  �9 z .  

Since the expression in the large parentheses belongs to Fi-1 for any n �9 Z 
and the polynomial ~(n) = p(n 4- m) - p(m) has the same degree and the 
same leading coefficient as p(n), we have gl ,,~ g. 

(iii) Let h(n) = h(n)S7 (~), g~(n) = ~(n)S~ '(~), where h(n), fit(n) �9 Fi-1. 
Then, similar to that in (i) and (ii), 

g(n)h(n) -1 = f(n)S~ (n)-q(n) ' g'(n)h(n) -1 _~ f ' (n)S~ '(n)-q(n) ' 

where f ( n ) , / ' ( n )  �9 Fi-1 Vn �9 Z. 
a) When h ?6 g, one has either deg(q) <: deg(p) or the leading coefficients 

of p and q are different; then deg(p - q) = deg(p) and, so, w(gh -1) = 
(i, deg(p)). Since g' ,,, g, the degrees and the leading coefficients of p 
and p' coincide; the same holds true for the polynomials p - q and pt _ q 
and, hence, g'h -1 ,,~ gh -1. 

b) When h ~ g, the degrees and the leading coefficients o fp  and q coincide; 
hence, d e g ( p - q )  < deg(p) and, so, w(gh -1) < (i, deg(p)), u 

2.5 COROLLARY. Let A be a system. 
(i) I rA ~ is a system consisting of F-polynomials of the form gr = h- lgh  

for g �9 A and h being a F-polynomial, then qo(A t) -~ qa(A). 
(ii) II X is a system consisting of F-polynomials g ~ satisfying the equa/ity 

g ' ( . )  = 9 - 1 ( m ) g ( .  + m) for some a �9 A ~ d  some m �9 N, then 
~(A') ~_ ~(A). 

(iii) Let h �9 A, h ~ l r ,  be a F-polynomial of weight minimal in A: 
w(h) < w(g) for any g �9 A. If  A' is a system consisting of F- 
polynomials of the form g' = gh -~, g �9 A, then ~(A') -~ ~(A). 
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Proof: In both (i) and (ii), all the elements of A' are equivalent to some 
elements of A. 

In (iii), the equivalence classes whose elements are members  of A change 
when we pass to A r, but  the equivalence of elements is preserved and their 
weights remain the same. The only exception is the equivalence class con- 
taining h; it is replaced by equivalence classes, having smaller weights, o 

3. P r o o f  o f  T h e o r e m  2.2 

From now on we fix a compact topological space X and a continuous action 
of F on X,  assuming that  X is minimal with respect to this action. All 
the F-polynomials we shall deal with will belong to PF0, and we shall not 
mention this specifically. 

After all these preparations, the proof of Theorem 2.2 is not difficult. 

3.1. Fix an openUC_  X.  W e h a v e t o  find x E U a n d n  E N such that  
g(n)x E U for every g E A. 

As Xis assumed minimal, there exist R1,. �9 Rc E F for which 

O R T I ( u )  ~ - X  . 
k = l  

Put  U~ = R~-I(U), r = 1 , . . . , c .  Define a system A' by 

A ' = { R - ~ l g R ~ ,  g E A ,  r = l , . . . , c } .  

By Corollary 2.5, ~(A')  = ~(A). 
Let h E A be an element whose weight is minimal in A~; we may  assume 

that  A and, hence, A ~ do not contain constant F-polynomials and, therefore, 
h # l r .  

3.2. P u t r 0 = l a n d  

A0 -- { f :  f (n)  = g(n)h(n) -I  , g E A } .  

Due to Corollary 2.5, A0 precedes A ~ and, so, precedes A. Hence, there 
exist Xo E Uro and nl  E N such that  f (nl)xo E Uro for every f E A0. We 
put  xl = h(nl)- lxo;  then, for any g E A ~, 

g(nl)Xl e Uro �9 
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3.3. Let 1 < r l  < c be such that X l E U r l .  We put  now 

VI = Ur, N ( N g ( n l ) - l ( u r ~  ; 
gEA t 

it is open and nonempty  since Xl E V1. 
We define a new system: 

AI ~-- { f :  f(n) = { g(n)h(n)-I } 
g(nl)-Xg(n Jr nl)h(n)  -1 ' g E A' . 

By Corollary 2.5, A1 precedes A. Hence, there exist Yl E V1 and n2 E N 
such that  f (n2)y l  E VI for every f E A1. We put  x2 -- h(n2)- ly l ;  then, for 
any g E A', 

g(n2)x  e c_ 

g ( n l ) - l g ( n 2  Jr n l )x2 E Vl ;- g(rt2 Jr h i )x2  E Vro �9 

3.4. We continue this process: assume that  points Xo, �9 �9 �9 xi and numbers 
n l , . . . ,  ni and r 0 , . . . ,  ri-1 have been already chosen and are such that,  for 
any 0 < l < m _< i and any g E A ~, 

Xrn E Vrm , g(~tm Jr.. .  Jr ni+l)Xm E Ur, �9 (3.1) 

Let 1 < ri < c be such that  xi E U~.. 
We put  now 

i--1 

Vi --= Ur' ('l (jN_OgNAg(rti j r ' "  jr rtJ§ 

since V/contains x/, it is nonempty. We next define a new system Ai by 

} A i = f  g (n i ) - lg (n  Jr ni)h(n) -1 
= . , g E A P  ; 

g(" i  J r - . - J r tZ l ) - - lg ( / t  Jr ni J r . - .  Jr ~/1)h(92) -1 

By Corollary 2.5, Ai precedes A; so, there exist y/ E V/ and ni+l E N 
such that  f (n i+l)y l  E Vi for every f E Ai. We put  Xi+l = h(ni+l)- lyi;  
then, for any g E A', 

g(ni+l)Xi+l E Vi CUri 

g(ni ) - lg(ni+l  Jr ni)xi+i E V/ ==~ g(ui+ 1 Jr rti)xi+ 1 E Uri_l �9 

g(ni Jr. . .  Jr n l ) - l g ( n i + l  J r . . .  Jr nl)Xi+l E Yi ~: 
g(ni+l Jr.. .  Jr nl)Xi+l E f ro  �9 
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3.5. 
i = 0 , . . . ,  c, we have rt = rm for some 0 _< l < m < c. We put  

x = R,.~xm E U ,  n = nm + . . .  + n/+l �9 

Then, since for any g E A one has R~lgR,. ,  E A', by (3.1) we have 

R ~ l g ( n ) x  = R~lg(n)Rr, , ,xm = R~lg(n)Rr ,  xm e Ur, = R ~ I ( u )  

for every g E A. Hence, for any g E A, we obtain 

g(n)x e v .  

A. L E I B M A N  G A F A  

We continue this process up to i = c; then, since rl _~ c for every 

4. C o r o l l a r i e s  a n d  G e n e r a l i z a t i o n s  

4.1. Since any compact  topological space contains a minimal closed in- 
variant subset  with respect to any set of its homeomorphisms,  it suffices to 
prove Theorem 0.4 for such a minimal subspace only. In this case we have 
a stronger statement:  

COROLLARY. Let (X,  p) be a compact matrix  space, let F be a nilpotent 
group of  its homeomorphisms, such that (X,  F) is minimM with respect to 
the action o f F ,  let T 1 , . . . , T t  E F, let k E N and let PiS, i = 1 , . . . , k ,  
j = 1 , . . . ,  t, be polynomials with rational coefficients taking on integer 
values at the integers and zero at zero. Then there exists a residual set 
Y C_ X such that [or any x E Y there exists a sequence nl ,  n2 , . . .  E N such 
that T~i ' l(n'~). . .T[~'dn~)x , x, for each i = 1 , . . . ,  k. 

Y n - - ~  O 0  

Proof: Define F-polynomials gi(n) = T~"~(") . . .Tt  p'' '("), i = 1 , . . . , k ,  and a 
system A = {g l , . . .  ,gk} C PF0. Define a function 6 on X by 

6 ( x ) =  ,eminf ( m ~ x p ( g ( n ) x , x ) ) .  

Theorem 2.2 gives that,  for any r > 0, the points x for which 6(x) < e are 
dense in X.  As an upper-semicontinuous function, 6 has a residual set of 
points of continuity and ~ vanishes at every such point, n 
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4.2. T h e / P - s e t  generated by a sequence {Si}iE m is the set 

iEF 

A subset  of N is called an IP* -set if it has nonempty  intersection with every 
/P - se t .  

COROLLARY (of the proof of Theorem 2.2). Let F be a nilpotent group 
acting on a compact topological space X and let X be minima/wi th  respect 
to this action. Let  A C PFo be a system ofF-polynomials without constant 
parts: g(O) = l r  for g �9 A. Then, for any open U C_ X ,  the set P = {n : 

g(n)U n ( N g e A g ( n ) - l U )  ~ 0} is an IP*-set .  

Indeed, it is easy to see that ,  for any I P - s e t  S, the numbers ni in the 
proof 3.2-3.4 of Theorem 2.2 can be chosen from S so that  the resulting 
integer n will be in S itself. This shows that  P N S r 0. 

4.3. As with to Theorem 0.1 of Furstenberg and Weiss, Theorem 0.4 has 
an equivalent combinatorial formulation: 

COROLLARY. Let F be a nilpotent group and let A �9 PFo be a system ofF-  
polynomials without constant parts. Let  k �9 N, and let y : F --* ( 1 , . . . ,  k} 
be a mapping. Then there exist T �9 F and n �9 N such that ~ is constant 
on the set {Tg(n) ,g  �9 A}.  

Proof: We may assume that  F is finitely generated. Let B1 C B2 C . . .  
be a chain of finite subsets of F such that  Urn~176 Bi = F. Define on the set 
K -- { 1 , . . . ,  k} r of all mappings o f t  to {1,..., k} a metric p: for x1, x2 �9 K 
we put  

P ( X l , X 2 )  = (max{m:  X l l B m  = X21Bm}) - 1  

Then (K,  p) is a metric compact ,  and F acts on K by 

(Tx ) (S )  = x ( S T )  , x E K , T , S  �9 F . 

Let X denote the closure of the orbit of ~ in K: X = {T~, T E F}. Then, 
by Theorem 0 .4 ,  there exist X E X and n E N such that  P(X, g(n)x)  < 1 
for every g E A. This means that  x ( l r )  = x(g(n))  for every g E A. 

Let m E N be such that  { l r , g ( n )  : g E A} C_ Bin. Find T E F for which 
p(Ty, X) < m-1  ; then, for every g E A, 

y(g(n)T)  = Ty(g(n) )  = x(g(n))  = • ( l r )  = T y ( l r )  = y ( T ) .  D 
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4.4 EXAMPLE: 
mations of I t :  

Fix t �9 N and consider the following set of affine transfor- 

R i , j ( g e l , . . . , g e j , . . . , x i , . . . , g e t )  = ( g e l , . . . , g e j , . . . , x i - t - g e j , . . . , g c t )  

l < j < i < t ,  

S i ( x l , . . . , x i , . . . , x t )  = ( x a , . . . , x i  + l , . . . , x t )  , l < i < t . 

Then 

R :x .. .R :i-llS (gea,.. . ,ge,,. . . ,ge,I 
= (gea,.--,xi + dlgel + . . .  + di- lXi-1 + d , . . . , x t )  

for any d l , . . . , d t ,  d E Z. The transformations Ri,j, 1 < j < i < t, Si, 
1 < i < t, generate a nilpotent group; denote it by P. 

Let Z ~ = C1 U . . .  U Ck be a partition of Z~; define a mapping 7/: F --* 
(1,...,k} by 

o(T) = i =~ T(O,. . . ,O) �9 Ci , 

Let Pi,i, 1 <_ j < i <_ t, pi, 1 < i <_ t, be polynomials with rational 
coefficients taking on integer values at the integers and zero at zero. Now, 
Corollary 4.3, applying to the described ~/and the system 

A =  gi = H - - ' o  ] - '  i = l , . . . , r  
j = l  

gives the following van der Wearden type theorem: 

With the assumptions above, there exist ge = (gel , . . . ,  xt) �9 i[ t and n E N 
such that x and all points 

i--1 

( g e , , . . . , g e i + Z P i , j ( n ) x j + P i ( n ) , . . . , x  t )  for i = l , . . . , t  
j----1 

belong to the same set Cm. 

4.5. Since in the formulation and the proof of Theorem 0.4 we dealt 
with only finite numbers of elements of F, we could assume that  F is locally 
nilpotent ( that  is, only its finitely generated subgroups are nilpotent) instead 
of requiring F to be nilpotent. 

4.6. It was noted by V. Bergelson that  the conclusion of Theorem 0.4 also 
holds true for the groups containing nilpotent subgroups of finite index, that  
is, for the groups of polynomial growth. 
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4.7. Let us define a nilpotent semigroup in the following way: a semigroup 
r is nilpotent if there exists a finite chain of its subsets ~ = F0 C_ F1 C_ . . .  C_ 
F, = F such that ,  for any 1 < i , j  < s and any T E Fi, S E Fj,  one has 

T S  = S T R ,  where R E Fmin( i , j ) - I  �9 

Let F be a nilpotent semigroup of continuous mappings of a compact 
topological space. Then the s tatement  of Theorem 0.4 is valid for such F 
as well; this can be ascertained by a method similar to tha t  used in the 
commutat ive situation (see, for example, Theorem 2.6 in [F]). 
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