Networks, Spanning Trees and Steiner Points

- **Network**
 Another name for a connected graph.

- **Tree**
 A network with no circuits.

- **Spanning Tree**
 A subgraph that connects all the vertices of the network and has no circuits.

- **Minimum Spanning Tree (MST)**
 Among all spanning trees of a weighted network, one with the least total weight.
Properties of Trees

Property 1
In a tree, there is one and only one path joining any two vertices. If there is one and only one path joining any two vertices of a graph, then the graph must be a tree.

Assume Network is connected and has no circuits.
Show there is one and only one path between any two vertices. Connected means at least one path.
If there were more than 1 path from a to b, then there is a circuit so it isn't a tree.
Property 2
In a tree, every edge is a bridge.
If every edge of a graph is a bridge, then the graph must be a tree.

A bridge is an edge so that if you remove it, the graph falls into 2 components.

If every edge is a bridge, why is it a tree?
Why is it connected?
Definition of bridge means a graph connected why doesn't it have circuits?

If it had a circuit, Not a bridge

Here do we mean "graphs" or "networks"?

might not be connected
always connected

N = # vertices = 7
E = # edges = 6

N = 11
E = 10

N = 6
E = 5

Conjecture: In any tree, the number of edges is one less than the number of vertices.
Property 3
A tree with N vertices has $N - 1$ edges.
If a network has N vertices and $N - 1$ edges, then it must be a tree.

(This second statement isn't quite true for all graphs. Just for networks. What is the difference?)

Note that every time you add a new vertex and an edge connecting it to the original tree, then you get a new tree and the number of edges is still one less than the number of vertices.
Spanning Trees

Property 4
If a network has \(N \) vertices and \(M \) edges, then \(M \geq N - 1 \).

\[R = M - (N - 1) \] is the redundancy of the network. The number of edges you need to remove to make it a tree.

If \(M = N - 1 \), the network is a tree; if \(M > N - 1 \), the network has circuits and is not a tree. (In other words, a tree is a network with zero redundancy and a network with positive redundancy is not a tree.

Consider the following map of seven towns. Suppose your goal is to connect them all with a water irrigation pipeline. The graph at the right shows the "cost" of installing each of the possible pipes.

How would you do it?

Cheaper Possible would be a tree. Spanning tree connects every vertex.

Total Cost: 324

(a) Try again.....

Best connect for A to rest

Total Cost: 302

(b)
There are many spanning trees in a graph. How could you find a Minimum Cost Spanning Tree?

Many ways to approach the problem. We'll discuss "Kruskal's Algorithm".

"Kruskal's Algorithm".

First Step. Among all the possible links, we choose the cheapest one,

Each Step: Pick Cheapest possible remaining link so that...

When do you finish?

How many edges do you have to add?

7 vertices \Rightarrow 6 edges: Done
Two Examples of Kruskal's Algorithm

Is Kruskal's Algorithm Optimal?

Does it always give the best possible spanning tree?
Look at a "cut set of edges" that breaks the graph into two parts.

Cost = 45+30+50+30+45+75+40+80+45
 = 440

Cost = 20+30+45+40+75+90+50+45+15
 = 410

Optimal Spanning Tree has cost 295. How can you improve these spanning trees?

Look at a "cut set of edges" that breaks the graph into two parts.

Try Kruskal's Algorithm
Explanation that shows that Kruskal's Algorithm will always find the optimal spanning tree.

Every edge in the spanning tree is a bridge of the spanning tree.

Removing it breaks the tree into two disconnected parts. There are many edges from one part to the other.

Adding any of them will make a new spanning tree.

Picking the cheapest edge will make the cheapest of all those spanning trees.

Since Kruskal's algorithm adds the cheapest edges first, this assures that the resulting spanning tree will be the cheapest possible.

Another algorithm

Prim's Algorithm.

Informally:
1. Pick any point to start.
2. Chose the cheapest edge that connected your "tree-so-far" with a new vertex.
3. Repeat until all the vertices are included.
Use Prim's Algorithm to generate a maze.

Start with a grid graph.
Give each edge a "random" weight.
Start at bottom right corner.
Add edges following Prim's Algorithm.

3. Find all possible Hamilton circuits in the given graph. (Use A as your reference point.)

 (a) Figure 6-22(a)
 (b) Figure 6-22(b)
 (c) Figure 6-22(c)

 \[\text{Theorem:} \]
 \[6 \text{ cities have } 5! \text{ possible Hamilton circuits only if "complete graph"} \]
 \[\text{all possible edges.} \]

20. For the weighted graph shown in Fig. 6-36, (i) find the indicated tour, and (ii) give its cost.

 (a) An optimal tour (use the brute-force algorithm)
 (b) The nearest-neighbor tour with starting vertex A
 (c) The nearest-neighbor tour with starting vertex B
 (d) The nearest-neighbor tour with starting vertex C

 \[3! = 6 \text{ possible routes.} \]

 \[3! = 6 \text{ possible routes.} \]

 \[\text{Try to find cheapest circuit through all cities (vertex)} \]

 \[\text{Nearest Neighbor} \]