


Math 152 Calculus and Analytic Geometry IT {l‘;(

Sec 5.3 The Fundamental Theorem of Calculus

A couple examples before we start:
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A couple examples before we start: \

Use the Limit Definition to find: Ixzdx = i ‘\3

-k )

n—’m ' =\
Ay
(3‘ \>-¢s\k't = “+‘\



We define a new function of x with the variable in the upper limit of a definite integral.

Consider f(t) to be velocity and g(x) to

g ( )C) — ]. f(t) dt be distance traveled after x seconds.
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The book calls,it the "arga so far".
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What can we say about the derivative of g(x)? Q(
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Consider the difference between g(x+h) and g(x)
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What is the limit definition of the derivative of g(x)?
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The Fundamental Theorem of Calculus Part T

g(x) =Af(t)dt d
o =1

If f is continuous on [a,b] then g(x) is continuous on [a,b] a
and differentiable on (a,b) and g'(x) = F(x)
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Examples:
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The Fundamental Theorem of Calculus Part IT
If f is continuous on [a,b] then
b
[7@di=F@)-F(a)
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where F is any antiderivative of f , that is F'(x) = f(x).

Proof: We know one antiderivative g(x)—)]f(t)dt

Any other antiderivative must be F(x)— x+C
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One example:
If v(t) is velocity of an object, v(t) = s'(t), where s(t) is the position function.

From examples we have done, the area under the curve of v(t) is equal to the distance travelled.
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FTC Part I: Take a function, integrate it and then take the derivative.

pd
gﬁ Clydt | = £6

FTC Part IT: Take a function, find its derivative and then integrate.
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Evaluate the following using rules for summations. Use the interval [2,8]
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A manufacturing company owns a major piece of equipment that depreciatgs at the continuous rate f=f(t),

where t is the time in months since the last overhaul. Because a fixed cost is incurred each time the

machine is overhauled, the company wants to determine the optimal time T (in month be‘rben erhauls.
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a) What does j f(s)ds represent?
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¢) Show that C(t) has a minimum value at =f(T). lr\\’
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What does C(t) mean and why|do you want to minimize it? ‘
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¢) Show that C(t) has a minimum value at the numbers t=T where C(T)=f(T).
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Attachments
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