Math 152 Calculus and Analytic Geometry II

Sec. 7.4 Integration by Partial Fractions

This section has suggestions for how to solve integrals involving rational functions by breaking them into several fractions that are simpler to integrate.

For example. $\int \frac{x^3 + x}{x - 1} dx$ $\boldsymbol{\times}$ Tf numero has power larger than d divide. Ć 0 $\times_{j^{+}}\times+\mathcal{G}+$ 8×= dХ + x2+ 2x+2 lu/x-1/+C

$$\int \frac{1}{x^{2}-16} dx$$

$$\frac{1}{x^{2}-16} = \frac{1}{(x-4)(x+4)} = \frac{A(x+4)}{x-4(x+4)} \frac{B(x-4)}{x+4(x-4)}$$

$$\int \frac{1}{x^{2}-16} dx$$

$$\int \frac{1}{x^{2}-16} dx$$

$$\int \frac{1}{x^{2}-16} dx$$

$$\int \frac{1}{x^{2}-16} dx = \int \frac{1}{x^{2}-16} dx$$

$$\int \frac{1}{x^{2}-16} dx = \int \frac{1}{x^{2}-16} dx$$

$$= \frac{1}{8} \ln (x+4) - \frac{1}{8} \ln (x-4) + C$$

other way to solve

Set numerators equal 1 = A(x+n) + B(x-n) P(nq in "nice" values for x $X = 4 \implies 1 = A \cdot 8 + C \cdot B$ $A = \frac{1}{8}$ $X = -4 \implies 1 = 0A - 8B$ $B = \frac{-1}{8}$

Steps to integrate a rational function:

1) Long Division

2) Factor the denominators as much as possible

3) Write the rational functions in terms of their "Partial Fractions" A

$$\overline{(ax+b)^{\prime}} = \overline{(ax^{2}+bx+c)^{\prime}}$$

$$\frac{1}{(x-3)(x+2)(x+q)(x)} = \frac{A}{x-3} + \frac{B}{x+2} + \frac{C}{x+q} + \frac{D}{x}$$

$$\frac{1}{(x+3)^{3}} = \frac{A}{x+3} + \frac{B}{(x+3)^{3}} \frac{C}{(x+3)^{3}}$$

$$\frac{1}{x^{2}+q} = \frac{A + B}{x^{2}+q}$$

$$\frac{1}{x^{2}+q} = \frac{A + B}{x^{2}+q}$$

$$\frac{1}{x^{3}+b^{7}} = \frac{A + B}{x^{2}+q}$$

 $A\mathbf{r} + B$

$$\frac{3 \times -7}{(x+2)^{2}(x-1)(x^{2}+q)^{2}}$$

$$= \frac{A}{x+2} + \frac{B}{(x+2)^{2}} + \frac{C}{(x-1)}$$

$$+ \frac{Dx+E}{x^{2}+q} + \frac{Fx+G}{(x^{2}+q)^{2}}$$

$$U = X+2$$

$$\int \frac{Dx+E}{x^{2}+q} = \int \frac{Dx}{x^{2}+q} ax + \int \frac{E}{x^{2}+q} ax$$

$$\int \frac{Dx+E}{x^{2}+q} = \int \frac{Dx}{x^{2}+q} x + \int \frac{E}{x^{2}+q} dx$$

$$\int \frac{Dx}{du = \partial x dx} E + \frac{1}{3} \frac{du}{du} + \frac{1}{3} \frac$$

Example:

$$\int \frac{x-9}{(x+5)(x-2)} dx$$

$$\frac{x-9}{(x+5)(x-2)} = \frac{A(x-2)}{x+5(x-2)} \frac{B(x+5)}{x-2(x+5)}$$

$$X-9 = A(x-2) + B(x+5)$$

$$X-9 = A(x-2) + B(x+5)$$

$$A=0$$

$$B=1-A$$

$$Constant = -9 = -2A + 5B$$

$$B=1-A$$

$$-9 = -2A + 5B$$

$$A=2B$$

$$B=-1$$

$$A=2B$$

$$B=-1$$

$$A=2B$$

$$B=-1$$

$$A=2B$$

$$B=-1$$

$$A=2B$$

$$A=2B$$

$$B=-1$$

$$A=2B$$

$$A=2$$

Example:

$$\int \frac{2x+3}{(x+1)^2} \frac{2\times43}{(x+1)^2} = \frac{A(x+1)}{x+1(x+1)} \frac{B}{(x+1)^2}$$

$$\int x+3 = A(x+1) + B$$

$$\partial x+3 = A(x+1) + B$$

$$\partial x+3 = A \cdot x + (A+B)$$

$$A = 2$$

$$B = 1$$

$$A = 2$$

$$B = 1$$

Example:

$$\int \frac{x^3}{\left(x+1\right)^3} dx$$

Example:

$$\int \frac{1}{(x+5)^2(x-1)} dx$$

Irreducible Factor in the Denominator

$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx$$

Use
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$$

Find Partial Fractions Decomposition for the following

$$\int \frac{x}{(x+2)(x-3)^2(x^2+2x+4)}$$

Using this method you can always break down a rational function into terms that you can integrate.

- 1. Divide if numerator is same or higher degree as denominator.
- 2. Factor denominator as much as possible.
- 3. If term is A/((x-b)), $\ln|x-b|$ will work.
- 4. If term is A/((x-b)^n) , power rule will work.
- 5. If term is $(Ax+B)/(x^2+c^2)$, then split into

5a. If term is $Ax/(x^2+c^2)$ then substitute $u=x^2+c^2$

5b. If term is $B/(x^2+c^2)$ then use $B(1/c \arctan(x/c))+C$

6. If term is $Ax+B/(x^2+bx+c)$, then complete the square in the denominator, make it $A/((x+b/2)^2+(Something)^2)$ and see step 5.