Cohomology for directed spaces Quantitative Geometry and Topology Workshop

Mario Gómez

The Ohio State University

gomezflores.1@osu.edu

April 27, 2019

- A stream¹ is a topological space X equipped with a preorder ≤_U on each open set U ⊂ X that satisfy a compatibility condition: the preorder on ∪U_α is the transitive-symmetric closure of the preorders ≤_{U_α}. Stream maps X → Y are continuous functions that respect the preorders.
- Streams admit generalizations of usual topological constructions. For instance, we have classifying spaces of monoids BM, which allow us to define cohomology of a stream as $H^1(X; M) = [X, BM]$.

¹Krishnan: A convinient cateogory of locally pre-ordered spaces. $\bullet \bullet = \bullet \bullet$

Unfortunately, many constructions do not detect directionality or are too wild. The fundamental monoid is not a dihomotopy invariant, and with $M = \mathbb{N}$ we obtain the usual cohomology with \mathbb{Z} coefficients. We hope to develop more refined invariants that detect this type of behavior.