Symplectic mapping class groups of rational 4-manifolds Quantitative aspects in symplectic geometry, QG&T@OSU

Jun Li

University of Michigan

Apr 27 2019

Jun Li (University of Michigan)

Symp of Rational 4-Manifolds

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}$, $k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$.

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}$, $k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$.

Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$. Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Question (Two questions on the Torelli group $Symp_h(X, \omega)$) $1 \rightarrow Symp_h(X, \omega) \rightarrow Symp(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset Aut[H_2(X, \mathbb{Z})].$

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$. Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Question (Two questions on the Torelli group $Symp_h(X, \omega)$) $1 \rightarrow Symp_h(X, \omega) \rightarrow Symp(X, \omega) \rightarrow \Gamma \rightarrow 1$, $\Gamma \subset Aut[H_2(X, \mathbb{Z})]$. $Q1[McDuff-Salamon Q16]: Symp_h(X, \omega) \subset Diff_0(X)$?

Jun Li (University of Michigan)

Symp of Rational 4-Manifolds

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$. Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Question (Two questions on the Torelli group $Symp_h(X, \omega)$) $1 \rightarrow Symp_h(X, \omega) \rightarrow Symp(X, \omega) \rightarrow \Gamma \rightarrow 1$, $\Gamma \subset Aut[H_2(X, \mathbb{Z})]$. $Q1[McDuff-Salamon Q16]: Symp_h(X, \omega) \subset Diff_0(X)$? $Q2[Donaldson]: \pi_0(Symp_h(X, \omega)) =? Is \pi_0(Symp_h(X, \omega)) always trivial?$

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$. Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Question (Two questions on the Torelli group $Symp_h(X, \omega)$) $1 \rightarrow Symp_h(X, \omega) \rightarrow Symp(X, \omega) \rightarrow \Gamma \rightarrow 1$, $\Gamma \subset Aut[H_2(X, \mathbb{Z})]$. Q1[McDuff-Salamon Q16]: $Symp_h(X, \omega) \subset Diff_0(X)$? Q2[Donaldson]: $\pi_0(Symp_h(X, \omega)) =$? Is $\pi_0(Symp_h(X, \omega))$ always trivial? (Studied by Gromov, Seidel, Abreu-McDuff, Evans, etc.)

Definition (Symplectic rational 4 manifolds, reduced forms)

X is a **Rational 4 Manifold** if it is diffeomorphic to $\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \ge 0$ or $S^2 \times S^2$ with the standard smooth structure.

Choose basis $\{H, E_1, \dots, E_n\}$ of $H_2(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a **reduced form** with area $(1|c_1, \dots, c_n)$ on the basis such that $1 > c_1 \ge c_2 \ge \dots \ge c_n > 0$ and $1 \ge c_i + c_j + c_k$. Symp (X, ω) is the subgroup of Diff(X) preserving ω .

Question (Two questions on the Torelli group $Symp_h(X, \omega)$) $1 \rightarrow Symp_h(X, \omega) \rightarrow Symp(X, \omega) \rightarrow \Gamma \rightarrow 1$, $\Gamma \subset Aut[H_2(X, \mathbb{Z})]$. Q1[McDuff-Salamon Q16]: $Symp_h(X, \omega) \subset Diff_0(X)$? Q2[Donaldson]: $\pi_0(Symp_h(X, \omega)) =$? Is $\pi_0(Symp_h(X, \omega))$ always trivial? (Studied by Gromov, Seidel, Abreu-McDuff, Evans, etc.)

Theorem (With Tian-Jun Li and Weiwei Wu)

A1: Yes. Symp_h(X, ω) \subset Diff₀(X), $\forall \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \geq 0, \forall \omega$.

A2: Not always. For almost all ω , $\pi_0(Symp_h(X, \omega)) = \{1\}$; But, if $\omega = (1|a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots), \frac{1}{3} < a < 1, \pi_0(Symp_h) = PB_m(S^2).$

Theorem (With Tian-Jun Li and Weiwei Wu)

A1: Yes. Symp_h(X, ω) \subset Diff₀(X), $\forall \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \geq 0, \forall \omega$.

A2: Not always. For almost all ω , $\pi_0(Symp_h(X, \omega)) = \{1\}$; But, if $\omega = (1|a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots), \frac{1}{3} < a < 1, \pi_0(Symp_h) = PB_m(S^2).$

Quantitative idea, 5-point blowup as an example

Without changing $\pi_0(Symp_h)$, ω can be deformed to be a **semi-toric** $\mathbb{R}P^2$ -packing form, i.e. $c_k < \frac{1}{2}, \sum_k c_k < 2$.

Theorem (With Tian-Jun Li and Weiwei Wu)

- A1: Yes. Symp_h(X, ω) \subset Diff₀(X), $\forall \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \geq 0, \forall \omega$.
- A2: Not always. For almost all ω , $\pi_0(Symp_h(X, \omega)) = \{1\}$; But, if $\omega = (1|a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots), \frac{1}{3} < a < 1, \pi_0(Symp_h) = PB_m(S^2).$

Quantitative idea, 5-point blowup as an example

Without changing $\pi_0(Symp_h)$, ω can be deformed to be a **semi-toric** $\mathbb{R}P^2$ -packing form, i.e. $c_k < \frac{1}{2}, \sum_k c_k < 2$. If $c_i \neq c_j$, then $A_{ij} \in \pi_0(Symp_h)$ is killed by the Figure.

Theorem (With Tian-Jun Li and Weiwei Wu)

A1: Yes. Symp_h(X,
$$\omega$$
) \subset Diff₀(X), $\forall \mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, k \geq 0, \forall \omega$.

A2: Not always. For almost all ω , $\pi_0(Symp_h(X, \omega)) = \{1\}$; But, if $\omega = (1|a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots), \frac{1}{3} < a < 1, \pi_0(Symp_h) = PB_m(S^2).$

Quantitative idea, 5-point blowup as an example

Without changing $\pi_0(Symp_h)$, ω can be deformed to be a **semi-toric** $\mathbb{R}P^2$ -packing form, i.e. $c_k < \frac{1}{2}, \sum_k c_k < 2$. If $c_i \neq c_j$, then $A_{ij} \in \pi_0(Symp_h)$ is killed by the Figure.

Thank You!