Symplectic mapping class groups of rational 4-manifolds Quantitative aspects in symplectic geometry, QG\&T@OSU

Jun Li
University of Michigan

Apr 272019

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$.

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$.
$\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$. $\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Question (Two questions on the Torelli group $\left.\operatorname{Symp}_{h}(X, \omega)\right)$
$1 \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \operatorname{Symp}(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset \operatorname{Aut}\left[H_{2}(X, \mathbb{Z})\right]$.

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$. $\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Question (Two questions on the Torelli group $\operatorname{Symp}_{h}(X, \omega)$) $1 \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \operatorname{Symp}(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset \operatorname{Aut}\left[H_{2}(X, \mathbb{Z})\right]$. Q1[McDuff-Salamon Q16]: $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diffo}_{0}(X)$?

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$. $\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Question (Two questions on the Torelli group $\operatorname{Symp}_{h}(X, \omega)$)
$1 \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \operatorname{Symp}(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset \operatorname{Aut}\left[H_{2}(X, \mathbb{Z})\right]$.
Q1[McDuff-Salamon Q16]: $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X)$?
Q2[Donaldson]: $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=$? Is $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)$ always trivial?

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$. $\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Question (Two questions on the Torelli group $\operatorname{Symp}_{h}(X, \omega)$)
$1 \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \operatorname{Symp}(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset \operatorname{Aut}\left[H_{2}(X, \mathbb{Z})\right]$.
Q1[McDuff-Salamon Q16]: $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X)$?
Q2[Donaldson]: $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=$? Is $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)$ always trivial? (Studied by Gromov, Seidel, Abreu-McDuff, Evans, etc.)

Questions on Torelli symplectomorphism groups

Definition (Symplectic rational 4 manifolds, reduced forms)
X is a Rational 4 Manifold if it is diffeomorphic to $\mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0$ or $S^{2} \times S^{2}$ with the standard smooth structure.

Choose basis $\left\{H, E_{1}, \cdots, E_{n}\right\}$ of $H_{2}(X, \mathbb{Z})$. Any symplectic form ω on X is diffeomorphic to a reduced form with area $\left(1 \mid c_{1}, \cdots, c_{n}\right)$ on the basis such that $1>c_{1} \geq c_{2} \geq \cdots \geq c_{n}>0$ and $1 \geq c_{i}+c_{j}+c_{k}$. $\operatorname{Symp}(X, \omega)$ is the subgroup of $\operatorname{Diff}(X)$ preserving ω.

Question (Two questions on the Torelli group $\operatorname{Symp}_{h}(X, \omega)$)
$1 \rightarrow \operatorname{Symp}_{h}(X, \omega) \rightarrow \operatorname{Symp}(X, \omega) \rightarrow \Gamma \rightarrow 1, \quad \Gamma \subset \operatorname{Aut}\left[H_{2}(X, \mathbb{Z})\right]$.
Q1[McDuff-Salamon Q16]: $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X)$?
Q2[Donaldson]: $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=$? Is $\pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)$ always trivial? (Studied by Gromov, Seidel, Abreu-McDuff, Evans, etc.)

Answers and idea

Theorem (With Tian-Jun Li and Weiwei Wu)
A1: Yes. $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X), \forall \mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0, \forall \omega$.
A2: Not always. For almost all $\omega, \pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=\{1\}$; But, if $\omega=\left(1 \mid a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots\right), \frac{1}{3}<a<1, \pi_{0}\left(S_{m p} h\right)=P B_{m}\left(S^{2}\right)$.

Answers and idea

Theorem (With Tian-Jun Li and Weiwei Wu)
A1: Yes. $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X), \forall \mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0, \forall \omega$.
A2: Not always. For almost all $\omega, \pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=\{1\}$; But, if $\omega=\left(1 \mid a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots\right), \frac{1}{3}<a<1, \pi_{0}\left(S_{m p}\right)=P B_{m}\left(S^{2}\right)$.

Quantitative idea, 5-point blowup as an example
Without changing $\pi_{0}\left(\right.$ Symp $\left._{h}\right), \omega$ can be deformed to be a semi-toric $\mathbb{R} P^{2}$-packing form, i.e. $c_{k}<\frac{1}{2}, \sum_{k} c_{k}<2$.

Answers and idea

Theorem (With Tian-Jun Li and Weiwei Wu)
A1: Yes. $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X), \forall \mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0, \forall \omega$.
A2: Not always. For almost all $\omega, \pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=\{1\}$; But, if $\omega=\left(1 \mid a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots\right), \frac{1}{3}<a<1, \pi_{0}\left(S_{m p}\right)=P B_{m}\left(S^{2}\right)$.

Quantitative idea, 5-point blowup as an example
Without changing $\pi_{0}\left(S y m p_{h}\right), \omega$ can be deformed to be a semi-toric $\mathbb{R} P^{2}$-packing form, i.e. $c_{k}<\frac{1}{2}, \sum_{k} c_{k}<2$.
If $c_{i} \neq c_{j}$, then $A_{i j} \in \pi_{0}\left(\right.$ Symp $\left._{h}\right)$ is killed by the Figure.

Answers and idea

Theorem (With Tian-Jun Li and Weiwei Wu)
A1: Yes. $\operatorname{Symp}_{h}(X, \omega) \subset \operatorname{Diff}_{0}(X), \forall \mathbb{C} P^{2} \# k \overline{\mathbb{C} P^{2}}, k \geq 0, \forall \omega$.
A2: Not always. For almost all $\omega, \pi_{0}\left(\operatorname{Symp}_{h}(X, \omega)\right)=\{1\}$; But, if $\omega=\left(1 \mid a, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \frac{1-a}{2}, \cdots\right), \frac{1}{3}<a<1, \pi_{0}\left(\right.$ Symp $\left._{h}\right)=P B_{m}\left(S^{2}\right)$.

Quantitative idea, 5-point blowup as an example
Without changing $\pi_{0}\left(S y m p_{h}\right), \omega$ can be deformed to be a semi-toric $\mathbb{R} P^{2}$-packing form, i.e. $c_{k}<\frac{1}{2}, \sum_{k} c_{k}<2$. If $c_{i} \neq c_{j}$, then $A_{i j} \in \pi_{0}\left(\right.$ Symp $\left._{h}\right)$ is killed by the Figure.

Thank You!

