WAIST ESTIMATES FOR THE MAPS FROM THE SPHERE

Alexey Balitskiy¹

¹balitski@mit.edu Massachusetts Institute of Technology

Regional Workshop in Quantitative Geometry & Topology, Columbus, April 27, 2019

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

FIBERS OF MAPS DROPPING DIM

large in some sense?

- in terms of volume (Gromov's waist)
- in terms of the diameter (Urysohn's width):

$$UW_m(X) = \inf_{f:X \to Y^m} \sup_{y \in Y^m} \operatorname{diam}(f^{-1}(y))$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

• in terms of the Urysohn width

THEOREM (GROMOV?)

 Let n = (m+1)(d+1). Every map f : Sⁿ → Y^m has a fiber F = f⁻¹(y) of Urysohn d-width UW_d(F) ≥ UW_{n-1}(Sⁿ) > π/2.
Let n = (m+1)(d+1) - 1, ε > 0 (small). There is a map f : Sⁿ → Δ^m, whose fibers all have UW_d(F) < ε.

Theorem

Assume that a generic PL-map $f : S^3 \to [0,1]$ is such that all regular fibers $f^{-1}(y), y \in (0,1)$, are PL-isomorphic to S^2 . Then there is a fiber $F = f^{-1}(y)$ of Urysohn 1-width $UW_1(F) \ge \frac{1}{2}$.

Conjecture: if $f: S^n \to Y^m$ is generic and almost all fibers have "bounded topological complexity", then $\exists F = f^{-1}(y)$ with $UW_{n-m-1}(F) > \frac{1}{10^{10}}$.

< ロ > < 母 > < 王 > < 王 > < 王 > の < で</p>