2.8 The Derivative as a Function

Definition - Given a function $f(x)$, we define the derivative of f to be the function $f'(x)$ where

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

for any x values in which this limit exists.

Definition - A function f is differentiable at a if $f'(a)$ exists. It is differentiable on an open interval (a,b) or (a,∞) if it is differentiable at every number in that interval.

Example: $f(x) = x^2 + 1$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 + 1 - (x^2 + 1)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 1 - x^2 - 1}{h} = \lim_{h \to 0} \frac{2xh}{h} = \lim_{h \to 0} 2x = 2x$$

Thus, $f'(x) = 2x$. Note: f is differentiable on $(-\infty, \infty)$.
$f'(x)$ is a function. It is related to $f(x)$ in the following way:

Given $x = a$, if a is in the domain of $f(x)$, then there is a point $(a, f(a))$ on the graph $y = f(x)$.

If there is a tangent line to the graph of $y = f(x)$ at $(a, f(a))$, then the slope of the tangent line is $f'(a)$.

Ex/ Use the graph of $y = f(x)$ to find $f'(2)$.

Ex/ Given the graph of $y = f(x)$, sketch a graph of $f'(x)$.
Ex: Use the definition of derivative to find \(f'(x) \).
\[
f(x) = ax + b
\]
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{[a(x+h) + b] - [ax + b]}{h}
\]
\[
= \lim_{h \to 0} \frac{ax + ah + b - ax - b}{h} = \lim_{h \to 0} \frac{ah}{h} = \lim_{h \to 0} a = a
\]
So, \(f'(x) = a \)

Alternate definition of \(f'(x) \)
\[
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}
\]

Using this definition we can find the derivative of \(f(x) = ax + b \) as well...
\[
f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{[at + b] - [ax + b]}{t - x}
\]
\[
= \lim_{t \to x} \frac{at + b - ax - b}{t - x} = \lim_{t \to x} \frac{at - ax}{t - x} = \lim_{t \to x} \frac{a(t-x)}{t-x} = \lim_{t \to x} a = a
\]
\[
f'(x) = a
\]

Note: \(f(x) = ax + b \) is a nonvertical straight line.

Does it make sense that the derivative is the constant \(f'(x) = a \)?

HINT: What is the slope of the line \(y = ax + b \)?

Is that slope the same for any point \((x, f(x))\) on the line?
NOTATION

Given \(y = f(x) \)

\(x \) is the independent variable

\(f'(x) \) is the derivative of \(f \) with respect to \(x \).

Alternate notation

\[
\frac{dy}{dx} \quad \frac{df}{dx}
\]

\[
\frac{d}{dx} f(x) \quad Df(x) \quad D_x f(x)
\]

\(\frac{d}{dx} \) is a differentiation operator

\(\frac{d}{dx} f(x) \) means “take the derivative with respect to \(x \), of \(f(x) \)”

When you take the derivative (if it exists) you get

\[
\frac{d}{dx} f(x) = \frac{df}{dx} \quad \text{the derivative}
\]

Similarly,

\[
\frac{d}{dx} y = \frac{dy}{dx}
\]

\[
\frac{d}{dx} y = y' \quad \frac{d}{dx} f(x) = f'(x)
\]

\(\frac{dy}{dx} \) is the name of a function, “the derivative of \(y \) with respect to \(x \)”

To represent an input into this function, we use the following notation:

\[
\left. \frac{dy}{dx} \right|_{x=a}
\]

“input a for \(x \) in \(\frac{dy}{dx} \)"
Ex/ \(f(x) = |x-2| \)

Note: \(f(x) = \begin{cases} x-2, & \text{if } x \geq 2 \\ -(x-2), & \text{if } x < 2 \end{cases} \)

If \(x > 2 \), then we can choose \(h \) small enough (while \(h \to 0 \)) so that \(x + h > 2 \)

Then for \(x > 2 \)

\[
P'(x) = \lim_{h \to 0} \frac{|(x+h)-2| - |x-2|}{h} = \lim_{h \to 0} \frac{x+h-2-x+2}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1
\]

If \(x < 2 \), then we can choose \(h \) small enough so that \(x + h < 2 \)

Then for \(x < 2 \)

\[
P'(x) = \lim_{h \to 0} \frac{|(x+h)-2| - |x-2|}{h} = \lim_{h \to 0} \frac{-(x+h-2) - -(x-2)}{h} = \lim_{h \to 0} \frac{-x-h+2+x-2}{h} = \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} -1 = -1
\]

However, if \(x = 2 \), what is \(P'(2) \)?

\[
P'(2) = \lim_{h \to 0} \frac{|(2+h)-2| - |2-2|}{h} = \lim_{h \to 0} \frac{|h|}{h} \quad \text{DNE} \]

Consider two cases

\[
\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} h = \lim_{h \to 0^-} h = \lim_{h \to 0^-} h = 0
\]

So, \(\lim_{h \to 0^+} \frac{|h|}{h} = 1 \) and \(\lim_{h \to 0^-} \frac{|h|}{h} = -1 \)

Also, \(\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0} -1 = -1 \)

So, \(\lim_{h \to 0} \frac{|h|}{h} \) DNE, so \(P'(2) \) does not exist

So, \(f \) is differentiable at all \(x \) except \(2 \).
Ex: Given \(f(x) = \frac{3}{x^2} \) find \(\frac{df}{dx} \).

\[
P'(x) = \lim_{h \to 0} \frac{\frac{3}{(x+h)^2} - \frac{3}{x^2}}{h} = \lim_{h \to 0} \frac{\frac{3x^2 - 3(x+h)^2}{x^2(x+h)^2}}{h} = \lim_{h \to 0} \frac{3x^2 - (3x^2 + 6xh + 3h^2)}{hx^2(x+h)^2}
\]

\[
= \lim_{h \to 0} \frac{3x^2 - 3x^2 - 6xh - 3h^2}{hx^2(x+h)^2} = \lim_{h \to 0} \frac{-6xh - 3h^2}{hx^2(x+h)^2} = \lim_{h \to 0} \frac{-6x - 3h}{x^2(x+h)^2}
\]

\[
= \lim_{h \to 0} \frac{-6x}{x^2} = \lim_{h \to 0} \frac{-6}{x^2} = -\frac{6}{x^2}
\]

So \(f'(x) = -\frac{6}{x^2} \) \[\text{or } \frac{df}{dx} = -\frac{6}{x^2}, \frac{dy}{dx} = -\frac{6}{x^2} \]

Note: \(f \) is differentiable at all \(x \) except 0.

Compute \(f'(-3) \)

\[
f'(-3) = -\frac{6}{(-3)^2} = -\frac{6}{9} = -\frac{2}{3}
\]

in other notation, \(\left. \frac{df}{dx} \right|_{x=-3} = -\frac{6}{9} = \frac{2}{3} \)

or \(\left. \frac{dy}{dx} \right|_{x=-3} = -\frac{6}{9} = \frac{2}{3} \)

THEOREM - If \(f \) is differentiable at \(a \) then \(f \) is continuous at \(a \).

[Equivalently: If \(f \) is not continuous at \(a \) then \(f \) is not differentiable at \(a \).]

Ex/ \(f(x) = |x-2| \) is not differentiable at 2 but it is continuous at 2. [The theorem does not apply here, why?]

Ex/ \(f(x) = \frac{3}{x^2} \) is differentiable at all \(x \) except 0, thus (by theorem above) \(f \) is continuous at all \(x \) except 0.
Three important ways a graph can fail to be differentiable at \(x = a \),

1. \(f \) is discontinuous at \(a \) (thus \(f \) is not differentiable at \(a \))

 \[\text{Example: } f(x) = \frac{1}{x-1}, \text{ at } x = 1 \]

2. \(f \) has a “sharp corner” or “kink” at \(x = a \)

 \[\text{Example: } f(x) = |x-2| \text{ at } x = 2 \]

3. \(f \) has a vertical tangent at \(x = a \), that is

 \[\lim_{x \to a} |f'(x)| = \infty \]

 \[\text{Example: } f(x) = \sqrt[3]{x} \text{ at } x = 0 \]

Ex. Assume \(\lim_{x \to \frac{\pi}{3}} \frac{\sin x - \sin \frac{\pi}{3}}{x - \frac{\pi}{3}} \) represents the derivative of some function \(f \) at some number \(a \). Find \(f \) at \(a = \frac{\pi}{3} \)

Notice: It looks like the definition \(f'(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a} \) with \(a = \frac{\pi}{3} \)

and \(f(x) = \sin x \), since \(\sin \left(\frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \).

So, \(f(x) = \sin x \) and \(f'(\frac{\pi}{3}) = \lim_{x \to \frac{\pi}{3}} \frac{\sin x - \sin \frac{\pi}{3}}{x - \frac{\pi}{3}} \).
Higher order derivatives.

If \(f \) is differentiable, then its derivative is \(f' \).
Then, \(f' \) is a function and \(f' \) might be differentiable.
If so, its derivative is \((f')' \) or simply \(f'' \).
\(f'' \) is called the second derivative of \(f \).

Recall \(\frac{dy}{dx} = \frac{dy}{dx} \) 1st derivative

If we take the derivative twice:

\[
\frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2 y}{dx^2} 2nd \ derivative
\]

Three times yields:

\[
\frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3} 3rd \ derivative
\]

In general, the notations are as follows:

\[
\begin{array}{c|c|c|c}
\hline
y & f & \text{Function} \\
\hline
y' & \frac{dy}{dx} & f' & \frac{df}{dx} & 1st \ der. \\
\hline
y'' & \frac{d^2 y}{dx^2} & f'' & \frac{d^2 f}{dx^2} & 2nd \ der. \\
\hline
y''' & \frac{d^3 y}{dx^3} & f''' & \frac{d^3 f}{dx^3} & 3rd \ der. \\
\hline
y^{(n)} & \frac{d^n y}{dx^n} & f^{(n)} & \frac{d^n f}{dx^n} & n^{th} \ der. \\
\hline
\end{array}
\]

Note: \(\frac{d^2 y}{dx^2} \) means \(\frac{dy}{dx} \) was applied twice. It does not mean “squared”. \(\frac{d^2 y}{dx^2} \) is NOT \(\left(\frac{dy}{dx} \right)^2 \).
Example: \(f(x) = 2x^3 - 5x + 7 \)

Find \(f'(x) \).

[You try it...]

\[f'(x) = 6x^2 - 5 \]

Find \(f''(x) \).

We take the derivative of \(f' \)

\[f''(x) = (f'(x))' = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{[6(x+h)^2 - 5] - [6x^2 - 5]}{h} \]

= \ldots \text{[You do it]} \ldots = 12x \]

So, \(f''(x) = 12x \)

Find \(f'''(x) \).

\[\frac{d}{dx} f''(x) = \lim_{h \to 0} \frac{f''(x+h) - f''(x)}{h} = \lim_{h \to 0} \frac{12(x+h) - 12x}{h} = \ldots = 12 \]

So, \(f'''(x) = 12 \)

What is \(f^{(4)}(x) \)? \(f^{(5)}(x) \)?

Note: Given \(s(t) \) is a position function. Then \(v(t) = s'(t) \) is the velocity function.
Moreover, \(a(t) = v'(t) = s''(t) \) is the acceleration function. It is the rate of change of velocity with respect to time.