1. Let \(f(x) = x^3 - 9x^2 + 4x + 8 \).
 \[f'(x) = 3x^2 - 18x + 4 \]
 \[f''(x) = 6x - 18 \]
 a) [3 pts] Use interval notation to indicate where \(f(x) \) is increasing.
 \[f'(0) = 0 \rightarrow 0 = 3x^2 - 18x + 4 \]
 \[x = \frac{18 \pm \sqrt{(18)^2 - 4(3)(4)}}{2(3)} = 3 \pm \frac{1}{3}\sqrt{69} \]
 \[f'(x) \text{ undefined } \rightarrow \text{ never} \]
 \[x \in \left(3 - \frac{1}{3}\sqrt{69}, 3 + \frac{1}{3}\sqrt{69}\right) \]
 b) [3 pts] Use interval notation to indicate where \(f(x) \) is decreasing.
 a) \(f \) is increasing on \((-\infty, 3 - \frac{1}{3}\sqrt{69}) \cup (3 + \frac{1}{3}\sqrt{69}, \infty)\)
 b) \(f \) is decreasing on \((3 - \frac{1}{3}\sqrt{69}, 3 + \frac{1}{3}\sqrt{69}) \)
 c) [3 pts] Use interval notation to indicate where \(f(x) \) is concave up.
 \[f''(3) = 0 \rightarrow (6x - 18 = 0) \quad x = 3 \]
 \[f''(x) \text{ undefined } \rightarrow \text{ never} \]
 \[x = 3 \]
 d) [3 pts] Use interval notation to indicate where \(f(x) \) is concave down.
 \[f \text{ is concave up on } (3, \infty) \]
 \[f \text{ is concave down on } (-\infty, 3) \]
2. Consider the function \(f(x) = 4x^3 - 5x \) on the interval \([-4, 4]\).

a) [4 pts] Find the average or mean slope of the function on this interval.

\[
\frac{f(4) - f(-4)}{4 - (-4)} = \frac{(4(4)^3 - 5(4)) - (4(-4)^3 - 5(-4))}{8}
\]

Ans: 59

b) [4 pts] By the Mean Value Theorem, we know there exists at least one \(c \) in the open interval \((-4, 4)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there are two values of \(c \) that work. Find both.

\[f'(x) = 12x^2 - 5 \]

Find \(c \) such that

\[f'(c) = 59 \]

\[12c^2 - 5 = 59 \]

\[12c^2 = 64 \]

\[c^2 = \frac{64}{12} \]

\[c = \pm \sqrt{\frac{16}{3}} \]

smaller one: \(-\frac{4}{\sqrt{3}}\), larger one: \(\frac{4}{\sqrt{3}}\)