MAXIMUM AND MINIMUM VALUES - EXTREME VALUES

Given a function f with domain D.

Definition - f has an absolute (or global) maximum at c if $f(c) \geq f(x)$ for all x in D. The number $f(c)$ is called the maximum value of f on D.

Definition - f has an absolute (or global) minimum at c if $f(c) \leq f(x)$ for all x in D. The number $f(c)$ is called the minimum value of f on D.

Note: Maximum and minimum values of f on D are called extreme values of f on D.

Note: The domain D is important when considering extreme values.

Ex/ $f(x) = x^2$

- Domain is assumed to be $(-\infty, \infty)$

- No Absolute Maximum (why?)

- Absolute minimum at $x=0$, $f(0) = 0$

- The minimum value of f is 0

Ex/ $f(x) = x^2 + 1$, $[-1, 4]$

- Domain given.

- The maximum value of f is $f(4) = 4^2 + 1 = 17$

- The minimum value of f is $f(-1) = (-1)^2 + 1 = 1$

Ex/ $f(x) = x^2 + 1$, $(-1, 4)$

- Domain given

- No Absolute maximum (why?)

- The minimum value of f is $f(0) = 0^2 + 1 = 1$
Definition - \(f \) has a local (or relative) maximum at \(c \) if \(f(c) \geq f(x) \) when \(x \) is "near" \(c \).

[More formally: "if there exists some open interval such that \(f(c) \geq f(x) \) for all \(x \) in that open interval."

Definition - \(f \) has a local (or relative) minimum at \(c \) if \(f(c) \leq f(x) \) when \(x \) is "near" \(c \).

Ex/ Given the graph of \(y = f(x) \) with domain \([a, b]\):

\[\begin{array}{c}
\begin{array}{c}
\text{y} \\
\text{x}
\end{array}
\end{array} \]

\(f \) has NO absolute minimum.

\(f \) has NO relative minimum at \(a \).

\(f \) has a relative maximum at \(c \), the value is \(f(c) \).

\(f \) has a relative minimum at \(d \), the value is \(f(d) \).

\(f \) has a relative minimum at \(g \), the value is \(f(g) \).

\(f \) has a relative maximum at \(h \), the value is \(f(h) \).

\(f \) has a relative minimum at \(i \), the value is \(f(i) \).

\(f \) has no relative extrema at \(j \).

\(f \) has a relative (and more so, an absolute) maximum at \(k \), the maximum value of \(f \) is \(f(k) \).

\(f \) has a relative minimum at \(b \), value is \(f(b) \).
THE EXTREME VALUE THEOREM

If \(f \) is continuous on a closed interval \([a, b]\), then \(f \) attains an absolute maximum value \(f(c) \) and an absolute minimum value \(f(d) \) at some numbers \(c \) and \(d \) in \([a, b]\).

Example:

- If \(f \) is continuous and \(f \) is an "unbroken piece of string," then "there is a highest point on the string and a lowest point." If \(f \) is not continuous on a closed interval \([a, b]\), then No Abs Max.

 Though, there is an Abs Min at \(c \).

- If \(f \) is not continuous on a closed interval \([a, b]\), then No Abs Max, No Abs Min.
Ex/ P continuous
Not a closed interval, (a, b)

No Abs Min.
Though Abs Max at c

Ex/
P continuous
Not a closed interval, $[a, b)$

No Abs Max.
Though Abs Min at c

FERMAT'S THEOREM
If P has a relative max or min at c and $P'(c)$ exists,
then $P'(c) = 0$.

NOTE: The following is **not** true in general.

If $P'(c) = 0$ then P has a relative max or min.
NO.

Ex/

$P'(c) = 0$ but no relative max or min

Relative max at b and $P'(b)$ exists, thus $P'(b) = 0$
Relative min at c but $P'(c)$ DNE.
NOTE: If there is a relative extreme, then either \(f'(c) = 0 \) or \(f'(c) \) does not exist.

So, if we wish to narrow our search for places on \(f(x) \) where a relative extreme occurs, then we need only look for places where \(f'(x) = 0 \) or \(f'(x) \DNE \).

Definition: A critical number of a function \(f \) is a number \(c \) in the domain of \(f \) such that either \(f'(c) = 0 \) or \(f'(c) \DNE \).

Hence,

If \(f \) has a relative max or min at \(c \), then \(c \) is a critical number.

Ex: Find the critical numbers of the function

1) \(f(x) = x^2 - 6x \)

\[f'(x) = 2x - 6 \]

When is \(f'(x) = 0 \)?

When is \(f'(x) \DNE \)?

\[f'(x) = 0 \]

Solve \(2x - 6 = 0 \)

\[x = 3 \]

\[f'(x) \DNE \]

\[2x - 6 \] is always defined
2) \(f(x) = \frac{1}{x} \) or \(x^{-1} \)

\[f'(x) = -x^{-2} \]

\[\frac{f'(x) = 0}{\text{solve } -\frac{1}{x^2} = 0} \]

- \(x = 0 \) never

\[\frac{f'(x) \text{ DNE}}{-\frac{1}{x^2} \text{ is undefined when } x = 0} \]

But, \(x = 0 \) is **not** in the **domain** of \(f \), so it is **not** a critical number.

3) \(f(x) = |x| \)

\[f'(x) = \begin{cases} -1 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases} \]

\[\frac{f'(x) = 0}{-1 = 0} \]

- \(1 = 0 \) never

\[\frac{f'(x) \text{ DNE}}{\text{at } x = 0, \text{ and } x = 0 \text{ is in the domain of } f, \text{ so } x = 0 \text{ is a critical number}} \]

4) \(f(x) = 3\sqrt{x} \) or \(x^{\frac{1}{3}} \)

\[f'(x) = \frac{1}{3} x^{-\frac{2}{3}} \]

\[\frac{f'(x) = 0}{\text{solve } \frac{1}{3x^{\frac{2}{3}}} = 0} \]

- \(1 = 0 \) **no**

\[\frac{f'(x) \text{ DNE}}{\frac{1}{3x^{\frac{2}{3}}} \text{ is undefined when } x = 0 \text{ (in domain)}} \]
5) \(f(x) = ax^2 + bx + c \quad (a \neq 0) \) Quadratic

\[
P(x) = 2ax + b
\]

\[
P'(x) = 0 \quad \text{Solve} \quad 2ax + b = 0 \quad x = -\frac{b}{2a}
\]

\[
P'(x) \, \text{DNE} \quad \text{NEVER}
\]

6) \(f(x) = \tan x - x \)

\[
P'(x) = \sec^2 x - 1
\]

\[
P'(x) = 0 \quad \text{solve} \quad \sec^2 x - 1 = 0 \quad \frac{1}{\cos^2 x} - 1 = 0
\]

\[
1 - \cos^2 x = 0 \quad \cos^2 x = 1
\]

\[
\cos x = \pm 1
\]

\[
\text{when} \quad \cos^2 x = 0, \quad \text{solve}
\]

\[
\cos x = 0 \quad \rightarrow \quad x = \frac{\pi}{2} + k\pi
\]

\[
\text{but} \quad \frac{\tan x - x}{\cos x - x} \quad \text{so} \quad x = \frac{\pi}{2} + k\pi \quad \text{are not in domain of} \quad f
\]

\[
\text{Not critical points}
\]

7) \(f(x) = \ln |x^2 + 1| \)

\[
P'(x) = \frac{1}{x^2 + 1} \cdot 2x
\]

\[
P'(x) = 0 \quad \frac{2x}{x^2 + 1} = 0 \quad 2x = 0 \quad x = 0
\]

\[
P'(x) \, \text{DNE} \quad \frac{2x}{x^2 + 1} \, \text{DNE when} \quad x^2 + 1 = 0, \quad \text{never}
\]
8) \(f(x) = x^2 - 6x, \quad 0 \leq x \leq 2 \)
 \[\text{Domain:} \quad [0, 2] \]
 \[f'(x) = 2x - 6 \]

 \[f'(x) = 0 \]
 \[2x - 6 = 0 \quad x = 3 \quad \text{NOT IN DOMAIN} \]

 \[f'(x) \text{ undefined} \]
 \[2x - 6 \text{ always defined.} \]

 However, due to the domain, \(f \) is
 NOT differentiable at \(x = 0 \) and \(x = 2 \).

THE CLOSED INTERVAL METHOD

To find the Absolute maximum and minimum values of a continuous function \(f \) on a closed interval \([a, b]\)

1. Find the critical numbers of \(f \) THAT ARE IN THE INTERVAL \((a, b)\)

2. Evaluate \(f \) at the critical numbers inside \((a, b)\) AND at the ENDPOINTS \(a \) and \(b \).

3. Compare the values of \(f \) found. The largest is the Abs Max value, the least value is the Abs Min value.
Ex/ Find the Abs Max and Min of \(f(x) = 3x - 2 \) on \([-1, 4]\)

1st \(f \) is cont on \([-1, 4]\)? \(\checkmark \)
2nd \([-1, 4]\) is a closed interval? \(\checkmark \)

Critical numbers of \(f \):

\[
\begin{array}{c|c|c|c}
\theta & f(\theta) & \text{abs max} & \text{abs min} \\
--- & --- & --- & --- \\
-\pi/6 & -\pi/6 & -\pi/6 & -\pi/6 \\
& & & \\
0 & 0 & 0 & 0 \\
& & & \\
\pi/6 & \pi/6 & \pi/6 & \pi/6 \\
\end{array}
\]

The Abs Max value is 10. It occurs at \(x = 4 \)
The Abs Min value is -5. It occurs at \(x = -1 \)

Ex/ Find the Abs Max and Min of \(f(\theta) = \sin^2 \theta \) on \([-\pi/2, \pi/6]\)

1st \(f \) is cont on \([-\pi/2, \pi/6]\)? \(\checkmark \)
2nd closed interval? \(\checkmark \)

Critical numbers \(f'(\theta) = 2 \sin \theta \cos \theta \)

\[
\begin{align*}
f'(\theta) &= 0 & \text{solve } 2 \sin \theta \cos \theta &= 0 \\
\sin \theta &= 0 & \Rightarrow & \theta = k \pi & k \text{ any integer} \\
\cos \theta &= 0 & \Rightarrow & \theta = \pm \pi/2 + k \pi & \text{integer} \\
\end{align*}
\]

which ones are INSIDE \((-\pi/4, \pi/6)\)

only \(\theta = 0 \)

2nd \(f'(\theta) \) is always defined

\[
\begin{array}{c|c|c|c}
\theta & f(\theta) & \text{abs max} & \text{abs min} \\
--- & --- & --- & --- \\
-\pi/4 & -\pi/4 & -\pi/4 & -\pi/4 \\
& & & \\
-\pi/6 & -\pi/6 & -\pi/6 & -\pi/6 \\
& & & \\
0 & 0 & 0 & 0 \\
& & & \\
\pi/6 & \pi/6 & \pi/6 & \pi/6 \\
\end{array}
\]

Abs Max Abs Min
Ex/ Abs Max/Min of $f(x) = (x+1)e^x$, $-3 \leq x \leq 0$

f cont. ✓ closed interval ✓

Critical Numbers: $f'(x) = e^x + (x+1)e^x = (x+2)e^x$

$f'(x) = 0$ Solve $(x+2)e^x = 0$

$e^x = 0$ or $x + 2 = 0$

\downarrow no

$x = -2$

$f'(x)$ DNE never

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$f(-3) = -2e^{-3}$</td>
</tr>
<tr>
<td>0</td>
<td>$f(0) = 1$ ← Abs Max</td>
</tr>
<tr>
<td>-2</td>
<td>$f(-2) = -e^{-2}$ ← Abs Min</td>
</tr>
</tbody>
</table>

Ex/ Abs Max/Min of $f(x) = \frac{1}{x^2 + 1}$ on $[0, 1]$

continuous ✓ closed ✓

$f'(x) = -(x^2+1)^{-2}(2x) = \frac{-2x}{(x^2+1)^2}$

$f'(x) = 0$ solve $\frac{-2x}{(x^2+1)^2} = 0$

$-2x = 0$ $x = 0$

NOT "inside" $(0, 1)$

$f'(x)$ DNE never

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$f(0) = 1$ ← Abs Max</td>
</tr>
<tr>
<td>1</td>
<td>$f(1) = \frac{1}{2}$ ← Abs Min</td>
</tr>
</tbody>
</table>