Rolle's Theorem

Let \(f \) be a function that satisfies the following three hypotheses:
1. \(f \) is continuous on the closed interval \([a, b]\)
2. \(f \) is differentiable on the open interval \((a, b)\)
3. \(f(a) = f(b) \)

Then there is at least one number \(c \) in \((a, b)\) such that \(f'(c) = 0 \)

Proof: Let \(f \) be a function that satisfies 1, 2, and 3.

Case 1: \(f(x) = k \) a constant on \([a, b]\)

Then \(f'(x) = 0 \) so \(c \) can be taken as any number in \((a, b)\).

Case 2: \(f(x) > f(a) \) for some \(x \) in \((a, b)\).

By the Extreme Value Theorem, \(f \) has a maximum value somewhere in \([a, b]\). Since \(f(a) = f(b) \), the max cannot occur at \(a \) or \(b \). So \(f \) attains the maximum value at some \(c \) in \((a, b)\). Moreover \(f \) is differentiable at \(c \), hence \(f'(c) = 0 \).

Case 3: \(f(x) < f(a) \) for some \(x \) in \((a, b)\).

[Similar argument to case 2 except we use the minimum value of \(f \) to find \(c \).]

Ex/ Consider \(y \)

\[
\begin{align*}
\text{Graph:} & \quad f(x) = 2 \\
\text{Points:} & \quad f(-1) = f(4) \\
& \quad f \text{ cont on } [-1, 4] \\
& \quad f \text{ diff on } (-1, 4)
\end{align*}
\]

Thus \(f'(c) = 0 \) for some \(c \) in \((-1, 4)\).

In fact, for this example \(f'(c) = 0 \) for all \(c \) in \((-1, 4)\).
Ex/ \(f(x) = \cos(3x) \) on \([0, \frac{\pi}{3}]\)

\[
\begin{align*}
\phi(0) &= 1 = \phi\left(\frac{\pi}{3}\right) \\
\phi &\text{ is cont on } [0, \frac{\pi}{3}] \\
\phi &\text{ is diff on } (0, \frac{\pi}{3})
\end{align*}
\]
Thus, \(\phi'(c) = 0 \) for some \(c \) in \((0, \frac{\pi}{3}) \).

In fact, \(\phi'(\frac{\pi}{6}) = 0 \), \(\phi'(\frac{2\pi}{3}) = 0 \), and \(\phi'(\pi) = 0 \).

Ex/ Prove that \(p(x) = x^3 - 5 \) has exactly one root in the interval \([1, 2]\).

1st - \(p(1) = 1^3 - 5 = -4 < 0 \)
and \(p(2) = 2^3 - 5 = 3 > 0 \)
Now, \(p \) is continuous on \([1, 2]\), so by the Intermediate Value Theorem, there is some \(c \) in \((1, 2)\) where \(p(c) = 0 \).
Thus, there is AT LEAST one root of \(x^3 - 5 \) in \([1, 2]\).

2nd - We need to prove that there is no other root.

\(\Rightarrow \) Suppose \(c_2 \) is another root, \(c_1 \neq c_2 \), in \([1, 2]\).

Then \(p(c_2) = 0 \) and so \(p(c) = p(c_2) \)
and \(p \) is continuous on \([c, c_2]\) (or \([c_2, c]\))
and \(p \) is differentiable on \((c, c_2)\) (or \((c_2, c)\)).

Thus, by Rolle's Theorem, \(p'(d) = 0 \) for some \(d \) in the interval (which is inside \((1, 2)\)).

Note \(p'(x) = 3x^2 \)
so, \(3d^2 = 0 \). But then \(d = 0 \) which is NOT in \((1, 2)\).

So \(\Rightarrow \) cannot be true.
Example: \(f(x) = 1 \times x \) on \([-2, 2]\)

Note: \(f(-2) = 1 \times (-2) = -2 \)
and \(f(2) = 1 \times 2 = 2 \) and \(f \) is continuous on \([-2, 2]\)

But, there is no \(c \) in \((-2, 2)\) where \(f'(c) = 0 \).

This does not contradict Rolle's Theorem because \(f \) is not differentiable everywhere in \((-2, 2)\).

\(f'(c) \neq 0 \) due to:

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

(or equivalently, \(f(b) - f(a) = f'(c)(b - a) \))
proof - Assume f satisfies the hypotheses.

Define the function h on $[a, b]$ as follows:

$$h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b-a} (x-a)$$

[constants $\%$]

Then, h is continuous on $[a, b]$ (because f and x are continuous on $[a, b]$)

Also, h is differentiable on (a, b) and

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b-a}$$

[we called this M_{AB}]

Next,

$$h(a) = f(a) - f(a) - M_{AB}(a-a) = 0 - M_{AB}(0) = 0$$

$$h(b) = f(b) - f(a) - M_{AB}(b-a) = f(b) - f(a) - [f(b) - f(a)] = 0$$

Thus $h(a) = h(b)$, so h satisfies the three hypotheses for Rolle’s Thm.

Hence, $h'(c) = 0$ for some c in (a, b).

And so,

$$f'(c) - \frac{f(b) - f(a)}{b-a} = 0$$

$$f'(c) = \frac{f(b) - f(a)}{b-a}$$

for some c in (a, b).

Ex/ Given f is differentiable on $(-1, 4)$ and continuous on $[-1, 4]$ with $f(-1) = 6$ and $f(4) = -24$.

Then we can apply the MVT to claim

$$f'(c) = \frac{f(4) - f(-1)}{4 - (-1)} = \frac{-24 - 6}{5} = -6$$

for some c in $(-1, 4)$.

//
Ex/ Given \(f(x) = x^2 + x - 2 \) on \([-1, 3]\)

Find the average (or mean) slope of the function on this interval.

\[
\begin{align*}
 f(-1) &= (-1)^2 + (-1) - 2 = -2 & A & (-1, -2) \\
 f(3) &= (3)^2 + (3) - 2 = 10 & B & (3, 10)
\end{align*}
\]

Then \(M_{AB} = \frac{f(3) - f(-1)}{3 - (-1)} = \frac{10 - (-2)}{4} = 3 \)

The MVT applies to our function on this interval (why?) so there is some \(c \) in \((-1, 3)\) where \(f'(c) = 3 \).

Find all such \(c \).

\[f'(x) = 2x + 1 \]

solve \(f'(c) = 3 \)

\[
\begin{align*}
 2c + 1 &= 3 \\
 2c &= 2 \\
 c &= 1
\end{align*}
\]

check that the value(s) are in the interval \((-1, 3)\).

\[
\begin{align*}
 f'\left(\frac{\pi}{2}\right) &= \sin t \\
 \text{solve } &\cos c = \frac{2}{\pi} \\
 c &= \cos^{-1}\left(\frac{2}{\pi}\right) + 2k\pi \quad \text{and} \quad -\cos^{-1}\left(\frac{2}{\pi}\right) + 2k\pi \quad (k \text{ any integer})
\end{align*}
\]

We want \(c \) in \((0, \frac{\pi}{2})\). Only one value works

\[c = \cos^{-1}\left(\frac{2}{\pi}\right) \]
Ex/ \(\frac{f(4) - f(1)}{4 - 1} = \frac{\frac{1}{4} - 1}{3} = \frac{-\frac{3}{4}}{3} = -\frac{1}{4} \)

By MVT there is some \(c \) in \((-1, 4)\) such that \(f'(c) = -\frac{1}{4} \).

Find all such \(c \).

\(f'(x) = \frac{d}{dx}x^{-1} = -x^{-2} \)

solve \(f'(c) = -\frac{1}{4} \)

\(-\frac{1}{c^2} = -\frac{1}{4} \)

\(-4 = -c^2 \quad c^2 = 4 \)

\(c = \pm 2 \)

But only \(c = 2 \) is in \((1, 4)\).

Ex/ Given \(f(0) = 4 \) and \(f'(x) \leq 2 \) for all \(x \). How large can \(f(7) \) be at most?

Note: We are given \(f \) is diff (and so cont.) for all \(x \), in particular, for all \(x \) in \([0, 7]\).

So, we can apply MVT and say that

\(f'(c) = \frac{f(7) - f(0)}{7 - 0} = \frac{f(7) - 4}{7} \) for some \(c \) in \((0, 7)\)

So, \(7f'(c) = f(7) - 4 \)

\(f(7) = 7f'(c) + 4 \)

Since \(f'(c) \leq 2 \), we see that

\(f(7) = 7 \cdot f'(c) + 4 \leq 7 \cdot 2 + 4 = 18 \)
THEOREM

If \(f'(x) = 0 \) for all \(x \) in an interval \((a, b)\),

then \(f \) is constant on \((a, b)\).

Think about it.
Take ANY \(x_1, x_2 \) in \((a, b)\).

By MVT (why?)

\[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)
\]

so \(0 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f(x_2) - f(x_1) = 0 \)

\(f(x_1) = f(x_2) \) \(\forall x_1, x_2 \) in \((a, b)\).

COROLLARY

If \(f'(x) = g'(x) \) for all \(x \) in an interval \((a, b)\),

then \(f - g \) is constant on \((a, b)\); that is

\(f(x_1) = g(x_1) + C \) for some constant \(C \).

Think about it.
Consider \(F(x_1) = f(x_1) - g(x_1) \).

Then \(F'(x) = f'(x_1) - g'(x_1) = 0 \) by hypotheses.

So...?
Ex/ A "proof" that \(\cos^2 \theta + \sin^2 \theta = 1 \)

Let \(f(\theta) = \cos^2 \theta + \sin^2 \theta \)

Then \(f'(\theta) = 2 \cos \theta (-\sin \theta) + 2 \sin \theta \cos \theta \)
\[= -2 \sin \theta \cos \theta + 2 \sin \theta \cos \theta \]
\[= 0 \]

Thus \(f(\theta) \) is a constant.

But what constant?

Choose \(\theta = 0 \) to compute

\[f(0) = \cos^2(0) + \sin^2(0) = 1^2 + 0^2 = 1 \]

So, the constant is 1.

\[\cos^2 \theta + \sin^2 \theta = 1 \]

Ex/ If \(f'(x) = 2x \) for all \(x \), what can we say about \(f(x) \)?

Notice: Given \(g(x) = x^2 \)

We know \(g'(x) = 2x \) for all \(x \)

So \(P'(x) = g'(x) \) for all \(x \)

Thus by the corollary, \(P(x) = g(x) + C \)

\(f(x) = x^2 + C \) for some constant \(C \).