Math 254 ~ Functions of Several Variables

13.1 – Introduction to Functions of Several Variables

Definition – Function of Two Variables

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in D there corresponds a unique real number $f(x, y)$, then f is called a **function of x and y**. The set D is the **domain** of f, and the corresponding set of values for $f(x, y)$ is the **range** of f.

Note: Given $z = f(x, y)$, x and y are called the **independent variables** and z is called the **dependent variable**.

Note: A function of n variables has a domain, D, consisting of ordered n-tuples (x_1, x_2, \ldots, x_n) and for each (x_1, x_2, \ldots, x_n) in D there corresponds a unique real number $f(x_1, x_2, \ldots, x_n)$.

Note: Given an equation describing a function of several variables, unless otherwise restricted, we assume that the domain is the set of all points for which the equation is defined.

Note: Given two n-variable functions f and g we can form the sum, difference, product and quotient of two functions as follows:

$$
(f \pm g)(x_1, x_2, \ldots, x_n) = f(x_1, x_2, \ldots, x_n) \pm g(x_1, x_2, \ldots, x_n)
$$

$$
(fg)(x_1, x_2, \ldots, x_n) = f(x_1, x_2, \ldots, x_n)g(x_1, x_2, \ldots, x_n)
$$

$$
\frac{f}{g}(x_1, x_2, \ldots, x_n) = \frac{f(x_1, x_2, \ldots, x_n)}{g(x_1, x_2, \ldots, x_n)}, \quad g(x_1, x_2, \ldots, x_n) \neq 0
$$

Note: Given an n-variable function h and a single variable function g we can form the composite function as follows:

$$
(g \circ h)(x_1, x_2, \ldots, x_n) = g(h(x_1, x_2, \ldots, x_n))
$$
Note: A function that can be written as a sum of functions of the form $cx^m y^n$ (where c is a real number and m and n are nonnegative integers) is called a **polynomial function** of two variables. A **rational function** is the quotient of two polynomial functions.

Definition – The **graph** of a function f of two variables is the set of all points (x, y, z) for which $z = f(x, y)$ and (x, y) is in the domain of f.

Note: The graph of a function f of n variables is the set of all points $(x_1, x_2, \ldots, x_n, f(x_1, x_2, \ldots, x_n))$ where (x_1, x_2, \ldots, x_n) is in the domain of f.

Note: To sketch a surface in space, it is useful to use traces in planes parallel to the coordinate planes. Given $z = f(x, y)$, one can sketch the trace of the surface in the plane $z = c$ (graphed on an xy-coordinate system.) Also, one can sketch the trace of the surface in the plane $y = c$ or $x = c$ (graphed on an xz-coordinate system or yz-coordinate system respectively.)

Note: A scalar field assigns the scalar $z = f(x, y)$ to the point (x, y). A scalar field can be characterized by level curves (or contour lines) along which the value of $f(x, y)$ is constant.

Note: If f is a function of three variables and c is a constant, the graph of the equation $f(x, y, z) = c$ is a level surface of the function f.
13.2 – Limits and Continuity

Definition – The δ-neighborhood about (x_0, y_0) is the disk centered at (x_0, y_0) with radius $\delta > 0$.

- **Open disk:** $\left\{ (x, y) \mid \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \right\}$
- **Closed disk:** $\left\{ (x, y) \mid \sqrt{(x-x_0)^2 + (y-y_0)^2} \leq \delta \right\}$

Definition – A point (x_0, y_0) in a plane region R is an **interior point** of R if there exists a δ-neighborhood about (x_0, y_0) that lies entirely in R. If every point in R is an interior point, then R is an **open region**. A point (x_0, y_0) is a **boundary point** of R if every open disk centered at (x_0, y_0) contains points inside R and points outside R. If a region contains all of its boundary points, the region is **closed**.

Note: A region that contains some but not all of its boundary points is neither open nor closed.

Note: Similar definitions are used in higher dimensions. The 3-dimensional analogy to an open disk is the open sphere.

Definition – Limit of a Function of Two Variables

Let f be a function of two variables defined, except possibly at (x_0, y_0), on an open disk centered at (x_0, y_0), and let L be a real number. Then

$$\lim_{(x,y) \to (x_0,y_0)} f(x,y) = L$$

if for each $\varepsilon > 0$ there corresponds a $\delta > 0$ such that

$$|f(x,y) - L| < \varepsilon \quad \text{whenever} \quad 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta.$$

Note: The phrase “whenever $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$” can be read as “for all points $(x,y) \neq (x_0,y_0)$ in the open disk of radius δ centered at (x_0,y_0).”

Note: $(x,y) \to (x_0,y_0)$ means that the point (x,y) is allowed to approach (x_0,y_0) from any direction. If the value of $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ is not the same for all possible paths to (x_0,y_0), the limit does not exist.
Definition – Continuity of a Function of Two Variables

A function f of two variables is **continuous at a point** (x_0, y_0) in an open region R if $f(x_0, y_0)$ is equal to the limit of $f(x, y)$ as (x, y) approaches (x_0, y_0). That is,

$$\lim_{(x,y) \to (x_0,y_0)} f(x,y) = f(x_0,y_0)$$

The function f is **continuous in the open region** R if it is continuous at every point in R.

Note: If one can remove a discontinuity at (x_0, y_0) by redefining $f(x_0, y_0)$, then the discontinuity is called **removable**. Otherwise, the discontinuity is **nonremovable**.

Theorem – Continuous Functions of Two Variables

If k is a real number and f and g are continuous at (x_0, y_0), then the following functions are continuous at (x_0, y_0).

1. Scalar multiple: kf
2. Sum and Difference: $f \pm g$
3. Product: fg
4. Quotient: f/g, if $g(x_0, y_0) \neq 0$

Note: It follows that polynomial and rational functions are continuous at every point in their domains.

Theorem – Continuity of a Composite Function

If h is continuous at (x_0, y_0) and g is continuous at $h(x_0, y_0)$, then the composite function given by $(g \circ h)(x, y) = g(h(x, y))$ is continuous at (x_0, y_0). That is,

$$\lim_{(x,y) \to (x_0,y_0)} g(h(x,y)) = g(h(x_0,y_0)).$$

Definition – Continuity of a Function of Three Variables

A function f of three variables is **continuous at a point** (x_0, y_0, z_0) in an open region R if $f(x_0, y_0, z_0)$ is defined and is equal to the limit of $f(x, y, z)$ as (x, y, z) approaches (x_0, y_0, z_0). That is,

$$\lim_{(x,y,z) \to (x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0).$$

The function f is **continuous in the open region** R if it is continuous at every point in R.

Note: It is sometimes useful to use polar coordinates (or spherical coordinates) to evaluate a limit. For example, $(x, y) \to (0, 0)$ becomes $r \to 0$.
13.3 – Partial Derivatives

Definition – Partial Derivatives of a Function of Two Variables

If \(z = f(x, y) \), then the first partial derivatives of \(f \) with respect to \(x \) and \(y \) are the functions \(f_x \) and \(f_y \) defined by

\[
\begin{align*}
 f_x(x, y) &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \\
 f_y(x, y) &= \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}
\end{align*}
\]

provided the limits exist.

Note: Given \(z = f(x, y) \), then to find \(f_x \) you consider \(y \) to be a constant and differentiate with respect to \(x \), and to find \(f_y \) you consider \(x \) to be a constant and differentiate with respect to \(y \).

Notation for First Partial Derivatives

For \(z = f(x, y) \), the partial derivatives \(f_x \) and \(f_y \) are denoted by

\[
\begin{align*}
 \frac{\partial}{\partial x} f(x, y) &= f_x(x, y) = z_x = \frac{\partial z}{\partial x} \\
 \frac{\partial}{\partial y} f(x, y) &= f_y(x, y) = z_y = \frac{\partial z}{\partial y}
\end{align*}
\]

and

The first partials evaluated at the point \((a, b)\) are denoted by

\[
\left. \frac{\partial z}{\partial x} \right|_{(a,b)} = f_x(a, b) \quad \text{and} \quad \left. \frac{\partial z}{\partial y} \right|_{(a,b)} = f_y(a, b)
\]

Note: The values of \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) at the point \((x_0, y_0, f(x_0, y_0))\) denote the slopes of the surface in the \(x \)- and \(y \)-directions, respectively.
Note: The concept of partial derivative is extended to functions of three or more variables. Given \(w = f(x_1, x_2, \ldots, x_n) \), there are \(n \) first partial derivatives.

\[
\frac{\partial w}{\partial x_k} (x_1, x_2, \ldots, x_n) = \lim_{\Delta x_k \to 0} \frac{f(x_1, x_2, \ldots, x_k + \Delta x_k, \ldots, x_n) - f(x_1, x_2, \ldots, x_k, \ldots, x_n)}{\Delta x_k}
\]

for \(k = 1, 2, \ldots, n \).

To find the partial derivative with respect to one independent variable, consider the other independent variables constants and differentiate with respect to the given variable.

Higher-Order Partial Derivatives

Given \(z = f(x, y) \). There are four second partial derivatives (provided they exist.)

\[
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx} \\
\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}
\]

\[
\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy} \\
\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}
\]

The last two are called **mixed partials derivatives**.

Note: The order of differentiation is indicated differently in the two types of notation:

In this example, differentiation w.r.t \(x \) is first, then w.r.t \(y \)

\[
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = (f_x)_y = f_{xy}
\]

Theorem – Equality of Mixed Partial Derivatives

If \(f \) is a function of \(x \) and \(y \) such that \(f_{xy} \) and \(f_{yx} \) are continuous on an open disk \(R \), then, for every \((x, y)\) in \(R \),

\[
f_{xy}(x, y) = f_{yx}(x, y).
\]
13.4 – Differentials

Recall: Given \(y = f(x) \), the differential of \(y \) is defined as

\[
dy = f'(x)\,dx.
\]

Moreover, the change in \(y \), \(\Delta y = f(x + \Delta x) - f(x) \), can be approximated for small values of \(\Delta x = dx \). That is,

\[
f(x + dx) - f(x) \approx f'(x)dx,
\]

or more briefly, \(\Delta y \approx dy \).

Definition – Given \(z = f(x, y) \) then \(\Delta x \) and \(\Delta y \) are the increments of \(x \) and \(y \), and the increment of \(z \) is given by

\[
\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y).
\]

Definition – Total Differential

If \(z = f(x, y) \) and \(\Delta x \) and \(\Delta y \) are increments of \(x \) and \(y \), then the differentials of the independent variables \(x \) and \(y \) are

\[
dx = \Delta x \quad \text{and} \quad dy = \Delta y
\]

And the total differential of the dependent variable \(z \) is

\[
dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x(x, y)dx + f_y(x, y)dy.
\]

Note: This is extended to functions of \(n \) variables. Given \(w = f(x_1, x_2, \ldots, x_n) \), the total differential of \(w \) is

\[
dw = \frac{\partial w}{\partial x_1} dx_1 + \frac{\partial w}{\partial x_2} dx_2 + \cdots + \frac{\partial w}{\partial x_n} dx_n = f_{x_1} dx_1 + f_{x_2} dx_2 + \cdots + f_{x_n} dx_n
\]
Definition – Differentiability

A function f given by $z = f(x, y)$ is **differentiable** at (x_0, y_0) if Δz can be written in the form

$$\Delta z = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where both $\varepsilon_1, \varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0,0)$. The function f is **differentiable in a region** R if it is differentiable at each point in R.

Theorem – Sufficient Conditions for Differentiability

If f is a function of x and y, where f'_x and f'_y are continuous in an open region R, then f is differentiable on R.

Note: The existence of the partials f'_x and f'_y does not guarantee that the function is differentiable.

Note: Differentiability is similarly defined for functions of more than three variables, and continuity of the first partials on an open region R implies differentiability on R.

Approximation by Differentials

Provided that $z = f(x, y)$ is differentiable, then for small Δx and Δy, we can approximate

$$\Delta z \approx dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

where $dx = \Delta x$ and $dy = \Delta y$.

Theorem – Differentiability Implies Continuity

If a function of x and y is differentiable at (x_0, y_0), then it is continuous at (x_0, y_0).
13.5 – Chain Rule for Functions of Several Variables

Theorem – Chain Rule: One Independent Variable

Let \(w = f(x, y) \), where \(f \) is a differentiable function of \(x \) and \(y \). If \(x = g(t) \) and \(y = h(t) \), where \(g \) and \(h \) are differentiable functions of \(t \), then \(w \) is a differentiable function of \(t \), and

\[
\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}.
\]

Note: The Chain Rule for one independent variable can be extended to any number of variables: Let \(w = f(x_1, \ldots, x_n) \), where \(f \) is a differentiable function of \(x_1, \ldots, x_n \) and if each \(x_i \) is a differentiable function of \(t \), then \(w \) is a differentiable function of \(t \) and

\[
\frac{dw}{dt} = \frac{\partial w}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial w}{\partial x_2} \frac{dx_2}{dt} + \cdots + \frac{\partial w}{\partial x_n} \frac{dx_n}{dt}.
\]

Note: Given \(w = f(x, y) \), \(x = g(t) \), and \(y = h(t) \), we say that \(w \) is the dependent variable, \(t \) is the independent variable, and \(x \) and \(y \) are called intermediate variables.

Theorem – Chain Rule: Two Independent Variables

Let \(w = f(x, y) \), where \(f \) is a differentiable function of \(x \) and \(y \). If \(x = g(s, t) \) and \(y = h(s, t) \) such that the first partials \(\frac{\partial x}{\partial s} \), \(\frac{\partial x}{\partial t} \), \(\frac{\partial y}{\partial s} \), and \(\frac{\partial y}{\partial t} \) all exist, then \(\frac{\partial w}{\partial s} \) and \(\frac{\partial w}{\partial t} \) exist and are given by

\[
\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t}.
\]
Note: The Chain Rule can be extended to any number of variables, intermediate or independent: Let \(w = f(x_1, \ldots, x_n) \), where \(f \) is a differentiable function of \(x_1, \ldots, x_n \) and where each \(x_j \) is a differentiable function of \(t_1, \ldots, t_m \). Then for each \(i = 1, 2, \ldots, m \) we have

\[
\frac{\partial w}{\partial t_i} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \cdots + \frac{\partial w}{\partial x_n} \frac{\partial x_n}{\partial t_i}.
\]

Theorem – Chain Rule: Implicit Differentiation

If the equation \(F(x, y) = 0 \) defines \(y \) implicitly as a differentiable function of \(x \), then

\[
\frac{dy}{dx} = -\frac{F_x(x, y)}{F_y(x, y)}, \text{ where } F_y(x, y) \neq 0.
\]

If the equation \(F(x, y, z) = 0 \) defines \(z \) implicitly as a differentiable function of \(x \) and \(y \), then

\[
\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}, \text{ where } F_z(x, y, z) \neq 0.
\]
13.6 – Directional Derivatives and Gradients

Definition – Directional Derivatives

Let f be a function of two variables x and y and let $\mathbf{u} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}$ be a unit vector. Then the directional derivative of f in the direction of \mathbf{u}, denoted by $D_{\mathbf{u}}f$, is

$$D_{\mathbf{u}}f(x, y) = \lim_{t \to 0} \frac{f(x + t \cos \theta, y + t \sin \theta) - f(x, y)}{t}$$

provided this limit exists.

Theorem – Directional Derivative

If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector $\mathbf{u} = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}$ is

$$D_{\mathbf{u}}f(x, y) = f_x(x, y) \cos \theta + f_y(x, y) \sin \theta .$$

Definition – Gradient of a Function of Two Variables

Let $z = f(x, y)$ be a function of x and y such that f_x and f_y exist. Then the gradient of f, denoted by $\nabla f(x, y)$, is the vector

$$\nabla f(x, y) = f_x(x, y) \mathbf{i} + f_y(x, y) \mathbf{j} .$$

Note: ∇f is read “del f.” Another notation for the gradient is $\text{grad} f(x, y)$.

Note: For each point (x, y), the gradient $\nabla f(x, y)$ is a vector in the xy-plane.

Theorem – Alternate Form of the Directional Derivative

If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector \mathbf{u} is

$$D_{\mathbf{u}}f = \nabla f(x, y) \cdot \mathbf{u} .$$
Theorem – Properties of the Gradient

Let f be differentiable at the point (x, y).

1. If $\nabla f(x, y) = \mathbf{0}$, then $D_u f(x, y) = 0$ for all u.

2. The direction of maximum increase of f is given by $\nabla f(x, y)$. The maximum value of $D_u f(x, y)$ is $\|\nabla f(x, y)\|$.

3. The direction of minimum increase of f is given by $-\nabla f(x, y)$. The minimum value of $D_u f(x, y)$ is $-\|\nabla f(x, y)\|$.

Theorem – Gradient is Normal to Level Curves

If f is differentiable at (x_0, y_0) and $\nabla f(x_0, y_0) \neq \mathbf{0}$, then $\nabla f(x_0, y_0)$ is normal to the level curve through (x_0, y_0).

Directional Derivative and Gradient for Three Variables

Let f be a function of x, y, and z, with continuous first partial derivatives. The directional derivative of f in the direction of a unit vector $u = ai + bj + ck$ is given by

$$D_u f(x, y, z) = af_x(x, y, z) + bf_y(x, y, z) + cf_z(x, y, z).$$

The gradient of f is defined to be

$$\nabla f(x, y, z) = f_x(x, y, z)i + f_y(x, y, z)j + f_z(x, y, z)k.$$

Properties of the gradient are as follows:

1. $D_u f(x, y, z) = \nabla f(x, y, z)\cdot u$
2. If $\nabla f(x, y, z) = \mathbf{0}$, then $D_u f(x, y, z) = 0$ for all u.
3. The direction of maximum increase of f is given by $\nabla f(x, y, z)$. The maximum value of $D_u f(x, y, z)$ is $\|\nabla f(x, y, z)\|$.
4. The direction of minimum increase of f is given by $-\nabla f(x, y, z)$. The minimum value of $D_u f(x, y, z)$ is $-\|\nabla f(x, y, z)\|$.

Note: If f is differentiable, then $\nabla f(x_0, y_0, z_0)$ is normal to the level surface through (x_0, y_0, z_0).
13.7 – Tangent Planes and Normal Lines

Definition – Tangent Plane and Normal Line

Let F be differentiable at the point $P(x_0, y_0, z_0)$ on the surface S given by $F(x, y, z) = 0$ such that $\nabla F(x_0, y_0, z_0) \neq 0$.

1. The plane through P that is normal to $\nabla F(x_0, y_0, z_0)$ is called the tangent plane to S at P.

2. The line through P having the direction of $\nabla F(x_0, y_0, z_0)$ is called the normal line to S at P.

Theorem – Equation of Tangent Plane

If F is differentiable at (x_0, y_0, z_0), then the equation of the tangent plane to the surface given by $F(x, y, z) = 0$ at (x_0, y_0, z_0) is

$$F_x(x_0, y_0, z_0)(x-x_0) + F_y(x_0, y_0, z_0)(y-y_0) + F_z(x_0, y_0, z_0)(z-z_0) = 0$$

Note: The equation can be written using the dot product as follows.

$$\nabla F(x_0, y_0, z_0) \cdot (x-x_0, y-y_0, z-z_0) = 0$$

Note: Given $z = f(x, y)$ we can define $F(x, y, z) = f(x, y) - z$. Then the level surface S given by $F(x, y, z) = 0$ is the graph of the surface $z = f(x, y)$. Moreover, if f is differentiable at (x_0, y_0) then F is differentiable at (x_0, y_0, z_0) and so an equation of the tangent plane to S at the point (x_0, y_0, z_0) is

$$f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0) - (z-z_0) = 0$$

Theorem – Gradient is Normal to Level Surfaces

If F is differentiable at (x_0, y_0, z_0) and $\nabla F(x_0, y_0, z_0) \neq 0$, then $\nabla F(x_0, y_0, z_0)$ is normal to the level surface through (x_0, y_0, z_0).
13.8 – Extrema of Functions of Two Variables

Recall: A region in the plane is closed if it contains all of its boundary points.

Definition – A region in the plane is called **bounded** if it is contained in some closed disk in the plane.

Definition – Let f be a function of two variables defined in a region R. If there exists some point (a,b) in R such that $f(a,b) \leq f(x,y)$ for all (x,y) in R then $f(a,b)$ is called the **minimum** of f in the region R. If there exists some point (c,d) in R such that $f(c,d) \geq f(x,y)$ for all (x,y) in R then $f(c,d)$ is called the **maximum** of f in the region R.

Note: A minimum is also called an absolute minimum. Likewise, a maximum is also called an absolute maximum.

Theorem – Extreme Value Theorem

Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane.

1. There is at least one point in R where f takes on a minimum value.
2. There is at least one point in R where f takes on a maximum value.

Definition – Relative Extrema

Let f be a function defined on a region R containing (x_0,y_0).

1. The function f has a **relative minimum** at (x_0,y_0) if $f(x_0,y_0) \leq f(x,y)$ for all (x,y) in an open disk containing (x_0,y_0).

2. The function f has a **relative maximum** at (x_0,y_0) if $f(x_0,y_0) \geq f(x,y)$ for all (x,y) in an open disk containing (x_0,y_0).
Definition – Critical Point

Let f be defined on an open region R containing (x_0, y_0). The point (x_0, y_0) is a **critical point** of f if one of the following is true.

1. $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$.
2. $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

Note: The first condition can be stated as $\nabla f(x_0, y_0) = \mathbf{0}$.

Theorem – Relative Extrema Occur Only at Critical Points

If f has a relative extremum at (x_0, y_0) on an open region R, then (x_0, y_0) is a critical point of f.

Definition – A critical point of f of the form $\nabla f(x_0, y_0) = \mathbf{0}$ that is neither a relative minimum nor a relative maximum is called a **saddle point**.

Theorem – Second Partial Test

Let f have continuous second partial derivatives on an open region containing the point (a, b) for which

$$f_x(a, b) = 0 \text{ and } f_y(a, b) = 0.$$

To test for relative extrema of f, consider the quantity

$$d = f_{xx}(a, b)f_{yy}(a, b) - [f_{xy}(a, b)]^2.$$

1. If $d > 0$ and $f_{xx}(a, b) > 0$, then f has a relative minimum at (a, b).
2. If $d > 0$ and $f_{xx}(a, b) < 0$, then f has a relative maximum at (a, b).
3. If $d < 0$, then $(a, b, f(a, b))$ is a saddle point.
4. The test is inconclusive if $d = 0$.
13.10 – Lagrange Multipliers

Theorem – Lagrange’s Theorem

Let f and g have continuous first partial derivatives such that f has an extremum at a point (x_0, y_0) on the smooth constraint curve $g(x, y) = c$. If $\nabla g(x_0, y_0) \neq 0$, then there is a real number λ such that

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

Note: The scalar λ (lambda) is called a **Lagrange Multiplier**.

Method of LagrangeMultipliers

Let f and g satisfy the hypothesis of Lagrange’s Theorem, and let f have a minimum or maximum subject to the constraint $g(x, y) = c$. To find the minimum or maximum of f, use the following steps.

1. Simultaneously solve the equations $\nabla f(x, y) = \lambda \nabla g(x, y)$ and $g(x, y) = c$ by solving the following system of equations.

$$
\begin{align*}
 f_x(x, y) &= \lambda g_x(x, y) \\
 f_y(x, y) &= \lambda g_y(x, y) \\
 g(x, y) &= c
\end{align*}
$$

2. Evaluate f at each solution point obtained in the first step. If f attains a maximum it will be the largest of these values. If f attains a minimum it will be the least of these values.

Note: A similar method can be used for functions of three or more variables. Also, if there are multiple constraints g_1, g_2, \ldots, g_n then solve $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 + \cdots + \lambda_n \nabla g_n$.

Note: The Extreme Value Theorem is useful here. If f is continuous on the smooth constraint curve $g(x, y) = c$ and the curve is a closed, bounded region of the plane, then there is a maximum and a minimum value attained by f.

Note: Here is a method for finding absolute extrema for a continuous function f on a closed, bounded region R. First, find all the critical points of f that lie in the interior of R. Then, find all extrema on the boundary of R. This can be done using Lagrange Multipliers if the boundary is described by some $g(x, y) = c$ such that $\nabla g(x, y)$ exists. Or, one can rewrite f as a function in one variable on a closed interval by substitution, then apply one variable calculus techniques to find the extrema. Lastly, compare the values of f at all points found in R. The largest is the max; the smallest is the min.