Properties of Power Series

Definition - Power Series
A power series has the general form

\[\sum_{k=0}^{\infty} c_k(x-a)^k \]

where \(a \) and \(c_k \) are real numbers, and \(x \) is a variable. The \(c_k \)'s are the coefficients of the power series and \(a \) is the center of the power series. The set of values of \(x \) for which the series converges is its interval of convergence. The radius of convergence of the power series, denoted \(R \), is the distance from the center of the series to the boundary of the interval of convergence.

Note: The terms of a power series may positive or negative. When finding the radius of convergence, we usually test for absolute convergence.

Note: \(\sum_{k=0}^{\infty} |c_k(x-a)^k| \) Root or Ratio Test are useful here.

Radio:
\[\lim_{k \to \infty} \frac{|c_{k+1}(x-a)^{k+1}|}{|c_k(x-a)^k|} = \lim_{k \to \infty} \frac{|c_{k+1}| |x-a|}{|c_k|} = |x-a| \lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|} = 1 \]

Root:
\[\lim_{k \to \infty} \sqrt[k]{|c_k(x-a)^k|} = \lim_{k \to \infty} \sqrt[k]{|x-a|} = |x-a| \lim_{k \to \infty} \sqrt[k]{|c_k|} = 1 \]

NOTE: \(|x| < M \Rightarrow -M < x < M \) (for \(M > 0 \))
Ex/ Find the interval and radius of convergence.

1. \(\sum_{k=0}^{\infty} x^k\) center is 0.

Consider \(\sum |x|^k\)

Ratio Test: \(\lim_{k \to \infty} \frac{|x|^{k+1}}{|x|^k} = \lim_{k \to \infty} |x| = |x| \lim_{k \to \infty} 1 = |x| \cdot 1\)

Thus, \(\lim_{k \to \infty} \frac{|x|^{k+1}}{|x|^k} < 1\) when \(|x| < 1\)

\(-1 < x < 1\)

Thus the series converges for \(x\) in \((-1, 1)\)

Radius of convergence \(R = 1\)

Convergence at the endpoints: \(x = -1, x = 1\)

\(x = 1\) \(\sum_{k=0}^{\infty} k\) Diverges (why?)

\(x = -1\) \(\sum_{k=0}^{\infty} (-1)^k\) Diverges (why?)

Thus, the Interval of Convergence is \((-1, 1)\)

2. \(\sum_{k=0}^{\infty} (x+3)^k\) center is -3 \((x - (-3))^k\)

Ratio Test: \(\lim_{k \to \infty} \frac{|(x+3)^{k+1}|}{|(x+3)^k|} = \lim_{k \to \infty} |x+3| = |x+3|\)

Converges when \(|x+3| < 1\)

\(-1 < |x+3| < 1\)
\(-4 < x < -2\)

Radius, \(R = | -2 - (-3) | = 1\)

Endpoints \(x = -4, x = -2\)

Diverges at both (why?)

Interval of Convergence \((-4, -2)\)

\[\sum_{k=0}^{\infty} (3x - 4)^k\]

Center is \(\frac{4}{3}\)

Ratio Test: \(\lim_{k \to \infty} \left| \frac{(3x - 4)^{k+1}}{(3x - 4)^k} \right| = \lim_{k \to \infty} |3x - 4| = |3x - 4|\)

Converges when \(|3x - 4| < 1\)

\(-1 < 3x - 4 < 1\)

\(3 < 3x < 5\)

\(1 < x < \frac{5}{3}\)

Radius, \(R = \left| \frac{4}{3} - 4\right| = \frac{1}{3}\)

Endpoints: \(x = 1, x = \frac{5}{3}\) Both diverge (why?)

I.O.C. \(1, \frac{5}{3}\)

\[\sum_{k=1}^{\infty} \frac{k^x}{k}\]

Center is 0

Ratio Test: \(\lim_{k \to \infty} \left| \frac{\frac{k^{x+1}}{x+1}}{\frac{k^x}{x}} \right| = \lim_{k \to \infty} \frac{x+1}{x} = 1\)

Converges when \(|x| < 1\) \(-1 < x < 1\)
Radius, $R = 1 - 0 = 1$

Endpoints:

$x = 1$, $x = -1$

$x = 1$:

$$\sum_{k=1}^{\infty} \frac{1}{k} = \sum_{k=1}^{\infty} \frac{1}{k}$$

Diverges

$x = -1$:

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$

Converges (why?)

$\sum_0^\infty (C \Gamma(-1, 1)) - \frac{\Gamma(0, 0)}{\Gamma(1)}$

Root Test:

$$\lim_{k \to \infty} \sqrt[k]{|k^x|^k} = \lim_{k \to \infty} k^{\frac{x}{k}} \left(\frac{1}{k}\right)^k$$

$$= |x| \lim_{k \to \infty} k = \infty > 1 \text{ for all } x \neq 0$$

\Rightarrow Except when x is at the center ($x = 0$)

$$\sum_{k=0}^{\infty} k^0 = \sum_{0}^{\infty} = 0$$

Radius, $R = 0$

$I.O.C. \ 0$

$\sum_{k=0}^{\infty} \Gamma(-1, 1)$

Center is 0

Radius Test:

$$\lim_{k \to \infty} \frac{|(-1)^{k+1} x^{k+1}|}{(2k+1)!} \cdot \frac{|x^k|}{(2k)!}$$

$$= |x| \lim_{k \to \infty} \frac{1}{\frac{1 \cdot 2 \cdot 3 \ldots (2k+1)}{(2k+1)}} = |x| \lim_{k \to \infty} \frac{1}{(2k+2)} = 0$$
\[
\lim_{k \to \infty} \frac{1}{k^2 + x^2} = 0 < 1 \quad \text{for all } x.
\]

Converges for all \(x \)

\[R = \infty \]

I.O.C. \((-\infty, \infty)\)

Theorem - Convergence of a Power Series

A power series \(\sum_{k=0}^{\infty} c_k (x-a)^k \) centered at \(a \) converges in one of three ways.

1) The series converges absolutely for all \(x \).

 \(\text{I.O.C. } (-\infty, \infty) \quad R = \infty \)

2) There is a real number \(R > 0 \) such that the series converges absolutely for \(|x-a| < R \) and diverges for \(|x-a| > R \), in which case the radius of convergence is \(R \).

3) The series converges only at \(a \). \(R = 0 \)
Theorem - Combining Power Series

Suppose the power series \(\sum c_k x^k \) and \(\sum d_k x^k \) converge absolutely to \(f(x) \) and \(g(x) \), respectively, on an interval \(I \).

1) Sum and Difference: The power series \(\sum (c_k + d_k) x^k \) converges absolutely to \(f(x) + g(x) \) on \(I \).

2) Multiplication by a power: The power series \(x^m \sum c_k x^k = \sum c_k x^{k+m} \) converges absolutely to \(x^m f(x) \) on \(I \) (provided \(m \) is an integer such that \(k+m \geq 0 \) for all terms of the series.)

3) Composition: If \(h(x) = bx^m \), where \(m \) is a positive integer and \(b \) is a real number, the power series \(\sum c_k (h(x))^k \) converges absolutely to the composite function \(f(h(x)) \), for all \(x \) such that \(h(x) \) is in \(I \).

Ex/ Recall the Geometric Series.

\[
\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \ldots \quad \text{for } |x| < 1
\]

Power series centered at 0.

I.O.C. \((-1, 1)\)

Use this to find the power series and interval of convergence for the following functions.
1. \[\frac{3^x}{1-x} = 3 \times 3 \sum_{k=0}^{\infty} x^k = \sum_{k=0}^{\infty} 3 \times 3^k x^k = \sum_{k=0}^{\infty} 3^k x^{k+1} \]

Ratio Test: \[\lim_{k \to \infty} \left| \frac{3^k x^{k+1}}{3^k x^k} \right| = |x| < 1 \]

Converges when \(-1 < x < 1\) \[\text{I.O.C.} (-1, 1) \]

Diverges at \(-1\) and \(1\) (why?)

2. \[\frac{1}{2 - 3x} \]

\[2 - 3x \leftrightarrow 1 - (____) \]

\[= \frac{1}{1 - (3x - 1)} \]

\[= 1 + (3x - 1) + (3x - 1)^2 + \ldots = \sum_{k=0}^{\infty} (3x - 1)^k \]

Ratio Test: \[\lim_{k \to \infty} \left| \frac{(3x - 1)^{k+1}}{(3x - 1)^k} \right| = |3x - 1| < 1 \]

\(-1 < 3x - 1 < 1\)

\(0 < 3x < 2\)

\(0 < x < \frac{2}{3}\)

Diverges at \(0\) and \(\frac{2}{3}\). \[\text{I.O.C.} \left(0, \frac{2}{3}\right) \]

3. \[\frac{1}{1 + x^4} \]

\[1 + x^4 \leftrightarrow 1 - (____) \]

\[= \frac{1}{1 - (-x^4)} = \sum_{k=0}^{\infty} (-x^4)^k = \sum_{k=0}^{\infty} (-1)^k x^{4k} \]

Ratio Test: \[\lim_{k \to \infty} \left| \frac{(-1)^{k+1} x^{4(k+1)}}{(-1)^k x^{4k}} \right| = |x^4| < 1 \]

\[\frac{1}{1} < 1 \]

\[-1 < x < 1\]

Diverges at \(-1\) and \(1\) \[\text{I.O.C.} (-1, 1) \]
Theorem - Differentiating and Integrating Power Series

Let the function \(f \) be defined by the power series \(\sum_{k=0}^{\infty} c_k(x-a)^k \) on its interval of convergence \(I \).

1) \(f \) is a continuous function on \(I \)

2) The power series may be differentiated or integrated term by term, and the resulting power series converges to \(f'(x) \) or \(\int f(x) \, dx + C \), respectively, at all points in the interior of \(I \) (\(C \) is an arbitrary constant.)

Ex. Let \(f(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \ldots \) for \(|x| < 1 \)

Then,

\[
\frac{d}{dx} \frac{1}{1-x} = -\frac{1}{(1-x)^2} = \frac{1}{1-x^2}
\]

And

\[
\frac{d}{dx} \sum_{k=0}^{\infty} x^k = \sum_{k=0}^{\infty} \frac{d}{dx} x^k = \sum_{k=0}^{\infty} kx^{k-1} = \sum_{k=1}^{\infty} kx^{k-1} = \sum_{k=0}^{\infty} (k+1)x^k
\]

or

\[
\frac{d}{dx} (1 + x + x^2 + x^3 + \ldots) = 0 + 1 + 2x + 3x^2
\]

Then,

\[
\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k
\]

Converges for \(|x| < 1 \)

Diverges at \(x = -1, 1 \)
Also, \(\int \frac{1}{1-x} \, dx = -\ln |1-x| + C_1 \)

And \(\int x \, dx = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} + C_2 \)

Thus,

\(-\ln |1-x| = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} + C\)

when \(x=0 \)

\(-\ln |1-0| = 0 = C_0 + C\)

\(C = 0 \)

So,

\(-\ln |1-x| = \sum_{k=0}^{\infty} \frac{x^{k+1}}{k+1} \)

OR \(\ln (1-x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{k+1}}{k+1} \) converges for \(|x|<1\)

Endpoints?

\(x = 1 \rightarrow \sum_{k=0}^{\infty} (-1)^{k+1} \frac{1}{k+1} = -1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \ldots \)

Diverges

\(x = -1 \rightarrow \sum_{k=0}^{\infty} (-1)^{k+1} \frac{1}{k+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \)

Converges \(?\) (why?)

I.O.C \([-1, 1]\)

Note: At \(x = -1 \), \(\ln (1-(-1)) = \ln 2 \), Thus

\(\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \)
Ex: Find a power series representation for \(f(x) = x^2 \tan^{-1}(3x) \)
centered at \(x = 0 \) using \(\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \).

\[\frac{x^2 \tan^{-1}(3x)}{3} \]

easy part \[\text{tricky} \]

Note: \(\frac{d}{du} \tan^{-1} u = \frac{1}{1+u^2} = \frac{1}{1-(u^2)} = 1 + (u^2) + (u^2)^2 + \ldots \)
for \(|u^2| < 1 \)

So, \(\frac{d}{du} \tan^{-1} u = \sum_{k=0}^{\infty} (-1)^k u^{2k} \)

Then, \(\tan^{-1} u = \sum_{k=0}^{\infty} (-1)^k \frac{u^{2k}}{2k+1} \)

\[C \text{ when } u = 0 \quad \tan^{-1} 0 = 0 = C \quad \rightarrow \quad C = 0 \]

Thus, \(\tan^{-1} u = \sum_{k=0}^{\infty} (-1)^k \frac{u^{2k+1}}{2k+1} \quad \text{for } |u| < 1 \)

So, \(\tan^{-1}(3x) = \sum_{k=0}^{\infty} (-1)^k \frac{(3x)^{2k+1}}{2k+1} \quad \text{for } |3x| < 1 \)

Finally,

\[x^2 \tan^{-1}(3x) = x^2 \sum_{k=0}^{\infty} (-1)^k \frac{(3x)^{2k+1}}{2k+1} \]

\[= \sum_{k=0}^{\infty} (-1)^k \frac{3^{2k+1}}{2k+1} x^{2k+3} \quad \text{for } |x| < \frac{1}{3} \]

\[\text{T.O.C } \left[-\frac{1}{3}, \frac{1}{3}\right] \]

Converges at \(x = -\frac{1}{3}, \frac{1}{3} \) (why?)