Physical Applications of Integration

Density and Mass

An object with uniform density satisfies

\[\text{mass} = \text{density} \cdot \text{volume} \]

We will work with "thin objects" - one-dimensional (a line segment).

In this case, we use "linear density" (mass per length) instead of density (mass per volume).

\[\begin{align*}
\text{uniform linear density, } \rho \\
\text{length, } l \\
\text{mass} = \rho \cdot l
\end{align*} \]

What if the density (linear) is NOT uniform?

Use slices:

\[p(x), \text{ density depends on } x. \]

\[\text{density } p(x) \]

\[\Delta x \]

mass of slice \(\approx p(x) \Delta x \)

Then total mass of bar \(\approx \sum p(x) \Delta x \)
Mass of a One-Dimensional Object

The mass is

\[m = \int_{a}^{b} \rho(x) \, dx \]

EX/ Given a thin bar located on \(0 \leq x \leq 6 \) with the density function \(\rho(x) = x^2 + 1 \) [units: \(x \) meters, \(\rho \) \(\text{kg/m} \)]

1) Find the mass of the bar,

\[m = \int_{0}^{6} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x \right]_0^6 = \frac{6^3}{3} + 6 = 78 \text{ kg} \]

2) Find the mass of the left half of the bar,

\[m_e = \int_{0}^{3} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x \right]_0^3 = \frac{3^3}{3} + 3 = 12 \text{ kg} \]

3) Find the mass of the right half of the bar,

\[m_r = \int_{3}^{6} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x \right]_3^6 = \left(\frac{6^3}{3} + 6 \right) - \left(\frac{3^3}{3} + 3 \right) = 46 \text{ kg} \]

4) Find the position on the bar where half of the mass will lie to the left.
\[c \]

Call it \(c \)

\[\text{Total mass} \rightarrow \int_0^c (x^2 + 1) \, dx = \frac{1}{2} (78) \]

\[\int_0^c (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x \right]_0^c = \frac{c^3}{3} + c \]

So, we want \(\frac{c^3}{3} + c = \frac{1}{2} (78) \)

\[2c^3 + 6c - 234 = 0 \]

Cubic \(\approx \); approximate answer on calculator

\[c \approx 4.687 \text{ meters (from the left)} \]

Ex/ Given a thin bar on \(0 \leq x \leq 4 \) with the density function

\[\rho(x) = \begin{cases} 2 & \text{if } 0 \leq x \leq 3 \\ x & \text{if } 3 < x \leq 4 \end{cases} \]

Find the mass.

\[m = \int_0^4 \rho(x) \, dx = \int_0^3 \rho(x) \, dx + \int_3^4 \rho(x) \, dx \]

depends on \(x \) interval

\[\rho(x) = 2 \quad \text{for } 0 \leq x < 3 \]

\[\rho(x) = x \quad \text{for } 3 < x < 4 \]
So, \[m = \int_0^3 2x \, dx + \int_3^4 x \, dx = \left(2x\right)\bigg|_0^3 + \left(\frac{x^2}{2}\right)\bigg|_3^4 \]
\[= 6 + \left(\frac{4^2}{2} - \frac{3^2}{2}\right) = 6 + \frac{7}{2} = \frac{19}{2} \text{ (mass units)} \]

WORK (The physics definition of work?)

\[W = F \cdot d \]

Work = force \cdot distance

\(\checkmark \) This is valid when the force is constant and the distance \(d \) is in the direction of the force.

Variable Force

Given an object moving in a straight line (say the x-axis) and acted upon by a force directed along that same line (direction is important) and the force varies as the object's x position.

Let \(F(x) \) = force on the object at \(x \)

at \(x = x_k \) \[\rightarrow F(x_k) \] is the force

at \(x = x_{k+1} \) \[\rightarrow F(x_{k+1}) \] is the force

Use a "slice" over the interval \([x_k, x_{k+1}]\) (small interval?) the force will be approximately constant.
So, the work over one "slice" is approximately

$$\Delta W = F(x) \cdot \Delta x$$

Then we add up the works of each slice.

$$\sum F(x) \Delta x$$

Finally, we get...

Work

The work done by a variable force $F(x)$ in moving an object along a line from $x=a$ to $x=b$ in the direction of the force is

$$W = \int_{a}^{b} F(x) \, dx$$

Ex: How much work is required to move an object from $x=2$ to $x=5$ (meters) in the presence of a force (Newtons) given by $F(x) = x+1$ acting in the positive x direction.

![Diagram of motion and force](motion_force_diagram)
\[W = \int_2^5 (x+1) \, dx = \left(\frac{x^2}{2} + x \right) \bigg|_2^5 = \left(\frac{25}{2} + 5 \right) - \left(2 + 2 \right) = \frac{27}{2} \, \text{N} \cdot \text{m} \]

or \(\frac{27}{2} \, \text{Joules} \)

Units of Work, Force, etc...

SI units (metric)	US
length	ft
mass	slug
Force	\(\text{N} = \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \)
work	\(\text{J} = \text{N} \cdot \text{m} \)

The full definition of Work involves a dot product of the vectors \(\vec{F} \) (force) and \(\vec{d} \) (displacement).

\[W = \vec{F} \cdot \vec{d} \]

For the examples we are working here, we need only understand that

1) If \(\vec{F} \) and \(\vec{d} \) are in the same direction, \(W = Fd \)
2) If \(\vec{F} \) and \(\vec{d} \) are opposite in direction, \(W = -Fd \)

Keep this in mind when setting up your coordinate system.

Make an axis that runs parallel to the direction of the force.
Choose a convenient position for 0 on your axis.
Choose which direction is the positive direction.
Once these are set, you must adhere to them.
Springs

\[\rightarrow \pm x \text{ direction} \]

\[x = 0 \iff \text{for convenience} \]

\[\begin{array}{c}
\text{Stretched} \\
\rightarrow F > 0 \\
\end{array} \]

\[x > 0 \]

\[\begin{array}{c}
\text{Compressed} \\
\leftarrow F < 0 \\
\end{array} \]

\[x < 0 \]

Hooke's Law \[F(x) = kx \quad (k > 0 \text{ is the spring constant}) \]

The force required to keep the spring in position \(x \).

Note: The force from the spring will be equal and opposite.

\[F_{\text{spring}} = -kx \]

Ex/ Find the spring constant given a force of 8N is required to stretch the spring 0.2m.

Use \(F = kx \)

\[8 = k(0.2) \quad k = 40 \frac{N}{m} \]

So, \(F(x) = 40x \).

Find the work needed to stretch the spring 0.4m from equilibrium.

\((\text{when } x = 0) \)
Since \(x > 0 \) on \([0, 0.4]\) \(F > 0 \). So force and displacement are in the same direction.

\[
\Delta W = F(x) \Delta x
\]

\[
W = \int_0^{0.4} F(x) \, dx = \int_0^{0.4} 40x \, dx = 20x^2 \bigg|_0^{0.4} = 3.2 \text{ N} \cdot \text{m} \text{ (or J)}
\]

Find the work needed to compress the spring 0.3 m from equilibrium.

\(F < 0 \) (but going from 0 to -0.3 we have \(\Delta x < 0 \))

\[
\Delta W = F(x) \Delta x
\]

\[
W = \int_0^{-0.3} 40x \, dx = 20x^2 \bigg|_0^{-0.3} = 1.8 \text{ N} \cdot \text{m} \text{ (or J)}
\]

Example: It takes 40 J of work to stretch a spring 0.2 meters from its equilibrium. How much work is required to stretch it an additional 0.2 meters?

1st: Find spring constant \(k \). We do not have a set of values for \(F \) and \(x \) to use.?

We do know \(W = \int_0^{0.2} kx \, dx = 40 \text{ J} \), given
Simplify integral, \(k \cdot \frac{1}{2} x^2 \)

Thus \(0.02k = 40 \)

So \(k = 2000 \frac{N}{m} \)

2nd - Compute work in stretching from \(0.2 \) to \(0.4 \)

\[
W = \int_{0.2}^{0.4} 2000x \, dx = 1000 \cdot x^2 \bigg|_{0.2}^{0.4} = 120 \text{ N}\cdot\text{m} \text{ (or J)}
\]

Work involving a constant force acting on an object whose "pieces" move different distances.

To find Work by Force

This slice, we need

- Mass of slice: \((\text{Volume}) \cdot (\text{Density}) \)
 \(\Rightarrow (Ay \cdot Dy) \cdot \rho \)
 \(\Rightarrow \text{cross sectional area} \cdot \text{thickness} \)
Then

\[F = mg = A(y) \, dy \, \rho \, g \]

So

\[\Delta W = A(y) \, dy \, \rho \, g \cdot \text{(displacement)} \]

Thus

\[\Delta W = A(y) \, dy \, \rho \, g \, (h - y) \]

Add up work of each slice,

\[\sum A(y) \rho g (h - y) \, dy \]

Finally,

\[W = \int_{a}^{b} A(y) \rho g (h - y) \, dy \]

From slice \(y = a \) to slice \(y = b \)

\[W = \int_{a}^{b} A(y) \rho g (h - y) \, dy \]

Ex: A 10 meter chain hangs vertically with a density of 3 kg/m. How much work is required to wind the entire chain onto a winch at the top of the chain?

Note: All "pieces" of the chain will end up at the same height as the top of the original chain position.
\[\text{slice} = \pi \Delta y \text{ meters} \]

mass of slice: \((3 \frac{\text{kg}}{\text{m}}) \cdot \Delta y (\text{m}) = 3 \Delta y \text{ kg} \]

\([A(y)] \text{ is not needed, why?} \]

So, \(F = 3 \Delta y \cdot (9.8) \text{ Newtons} \)

and \(\Delta y = 10 - y \)

So, \(w = \int_0^{10} 3(9.8)(10-y) \, dy = \ldots \)

Try setting up with different choices for the "0" on y-axis.

Such as:

\[w = \int_{-10}^{0} 3(9.8)(0-y) \, dy = \ldots \]

Ex/ A tank is formed by revolving \(y = x^2 \) on \([0, 4]\) (in meters) about the y-axis.

The tank is filled with water (density \(\rho = 1000 \text{ kg/m}^3 \)) up to a height of 10 meters.

Find the work needed to pump all of the water to an outflow pipe at the top of the tank.
\[D(y) = 16 - y \quad (\text{m}) \]

\[A(y) = \pi \left(\sqrt{y} - 0 \right)^2 = \pi y \quad (\text{m}^2) \]

\[r(y) \text{ radius in terms of } y \]
\[r(y) = \sqrt{y} - 0 \]

Mass of slice: \[\frac{A(y) \, dy \cdot \rho}{\text{Vol}} = \pi y \, dy \cdot 1000 \quad (\text{kg}) \]

Force on slice: \[m \cdot g = \pi y \, dy \cdot 1000 \cdot 9.8 \quad (\text{N}) \]

\[W = \int_0^{10} A(y) \rho g D(y) \, dy \]

\[= \int_0^{10} \pi y \cdot 1000 \cdot 9.8 \cdot (16 - y) \, dy \]

\[= \pi 1000 (9.8) \left[16y - y^2 \right]_0^5 \]

\[= \pi 1000 (9.8) \left(8y^2 - \frac{y^3}{3} \right) \]

\[\approx 14,367,550.4 \quad \text{N} \cdot \text{m} \quad \text{(or J)} \]
Useful Geometry Review

Cone

\[\frac{r}{y} = \frac{D/2}{H} \]
\[\therefore r = \frac{D}{2} \cdot \frac{y}{H} \]
\[A(y) = \pi r^2 = \ldots \]

Sphere

\[x^2 + y^2 = R^2 \]

Right Triangle

\[r^2 + (0-y)^2 = R^2 \]
\[\therefore r = \sqrt{R^2 - y^2} \]
\[A(y) = \pi r^2 = \ldots \]

Similar Triangles

\[\frac{w}{y} = \frac{D}{H} \]
\[\therefore w = \frac{D \cdot y}{H} \]
\[A(y) = L \cdot w = \ldots \]