Planes and Surfaces

Definition - Plane in \(\mathbb{R}^3 \)

Given a fixed point \(P_0 \) and a nonzero normal vector \(\mathbf{n} \), the set of points \(P \) in \(\mathbb{R}^3 \) for which \(P_0 \mathbf{P} \) is orthogonal to \(\mathbf{n} \) is called a plane.

\[
P_0 \mathbf{P} = \langle x-x_0, y-y_0, z-z_0 \rangle \text{ is orthogonal to } \mathbf{n}
\]

when

\[
\mathbf{n} \cdot P_0 \mathbf{P} = 0
\]

Thus

\[
\langle a, b, c \rangle \cdot \langle x-x_0, y-y_0, z-z_0 \rangle = 0
\]

\[
a(x-x_0) + b(y-y_0) + c(z-z_0) = 0
\]

\[
ax + by + cz = d \quad \text{(where } d = ax_0 + by_0 + cz_0) \]

General Equation of a Plane in \(\mathbb{R}^3 \)

The plane passing through (or containing) the point \((x_0, y_0, z_0) \) with a nonzero normal vector \(\mathbf{n} = \langle a, b, c \rangle \) is described by the equation

\[
a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 \quad \text{or} \quad ax + by + cz = d
\]

where \(d = ax_0 + by_0 + cz_0 \)

Ex/ The plane containing \((2, -1, 5) \) with normal vector \(\mathbf{n} = \langle 0, 1, 0 \rangle \),

\[
\langle 0, 1, 0 \rangle \cdot \langle x-2, y+1, z-5 \rangle = 0
\]

\[
0 + y + 1 + 0 = 0 \quad \text{or} \quad y = -1
\]
Ex/ The plane containing the points \((0,0,3)\), \((2,1,1)\), \((-1,0,4)\).

Find \(\overrightarrow{PQ} \times \overrightarrow{PR}\) is normal to the plane?

\[\overrightarrow{PQ} = <2-0, 1-0, 1-3> = <2, 1, -2>\]
\[\overrightarrow{PR} = <-1-0, 0-0, 4-3> = <-1, 0, 1>\]

\[\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ 2 & 1 & -2 \\ -1 & 0 & 1 \end{vmatrix} = <1, 0, 1>\]

Then...

using \((0,0,3)\)

\[<1, 0, 1> \cdot <x-0, y-0, z-3> = 0\]

\[x + 0 + z - 3 = 0 \quad \text{or} \quad [x+z=3] \text{ check it?}\]

Could also use \((2,1,1)\), or \((-1,0,4)\) Try it?

Could also use any nonzero vector parallel to \(<1, 0, 1>\) for the normal vector. Try it?

Ex/ What is the intersection of the plane \(x - 2y + z = 4\) with the...

xy-plane? (when \(z=0\))

\[x - 2y + (0) = 4\]
\[y = \frac{1}{2}x - 2\]

yz-plane? (when \(x=0\))

\[-2y + z = 4\]
\[z = 2y + 4\]

xz-plane? (when \(y=0\))

\[x - 2(0) + z = 4\]
\[z = 4 - x\]
What is a normal vector to the plane \(x - 2y + z = 4 \)?

\[\vec{n} = \langle 1, -2, 1 \rangle \]

Definition - Parallel and Orthogonal Planes

Two distinct planes are parallel if their normal vectors are parallel.

Two planes are orthogonal if their normal vectors are orthogonal.

Example

Find an equation for the plane containing \((2, -3, 1)\) that is parallel to the plane \(-x + 4y = 0\).

\[\vec{n}_1 = \langle -1, 4, 0 \rangle \]

So, use \(\vec{n}_2 = \vec{n}_1 = \langle -1, 4, 0 \rangle \)

\[\langle -1, 4, 0 \rangle \cdot \langle x - 2, y + 3, z - 1 \rangle = 0 \]

\[-x + 2 + 4y + 12 + 0 = 0 \]

\[-x + 4y = -14 \] (check it?)

Example

Are the planes \(x - y + 3z = 2 \) and \(2x - 4y - 2z = 7 \) orthogonal?

\[\vec{n}_1 = \langle 1, -1, 3 \rangle \quad \vec{n}_2 = \langle 2, -4, -2 \rangle \]

\[\vec{n}_1 \cdot \vec{n}_2 = 2 + 4 - 6 = 0 \] yes √
Ex/ Find an equation for the line of intersection of the planes
\[3x - y + z = 6 \quad \text{and} \quad 2x + y - 4z = 0.\]

\[\vec{\nu}_1 = \langle 3, -1, 1 \rangle \quad \vec{\nu}_2 = \langle 2, 1, -4 \rangle\]

Note: \(\vec{\nu}_1, \vec{\nu}_2\) are not parallel (why?) so the planes intersect.

Line? Need point & direction.

Direction:

Use \(\vec{\nu}_1 \times \vec{\nu}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 1 \\ 2 & 1 & -4 \end{vmatrix} = \langle 3, 14, 5 \rangle\)

Point:

solve \[\begin{align*}
3x - y + z &= 6 \\
2x + y - 4z &= 0
\end{align*}\]

\[\rightarrow y = 3x + z - 6\]

Sub

\[2x + (3x + z - 6) - 4z = 0\]

\[5x - 3z = 6 \quad \text{(many solutions)}\]

choose \(x = 0\)

Then \(-3z = 6 \quad z = -2\)

So, \(y = 3(0) + (-2) - 6 = -8\)

\((0, -8, -2)\)

Line:

\[\vec{r}(t) = \langle 0, -8, -2 \rangle + t \langle 3, 14, 5 \rangle\]

or \[\vec{r}(t) = \langle 3t, 14t - 8, 5t - 2 \rangle \quad \text{check it!}\]

Definition - Cylinder

Given a curve \(C\) in a plane \(P\) and a line \(l\) not in \(P\), a cylinder is the surface consisting of all lines parallel to \(l\) that pass through \(C\).
Note: If \(x = a \) and \(z = b \) is a solution to \(z = \sin(x) \) then \((a, y, b) \) is a solution to \(z = \sin(x) \) for ANY \(y \).

Definition - Trace
A trace of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes.

Example
\[x^2 - y + 4z^2 = 0 \]

- **xy-trace** \((z=0) \):
 \[x^2 - y + 0 = 0 \]
 \[y = x^2 \]

- **xz-trace** \((y=0) \):
 \[x^2 + 4z^2 = 0 \]
 \[(0, 0) \]

- **yz-trace** \((x=0) \):
 \[0 - y + 4z^2 = 0 \]
 \[y = 4z^2 \]

- **z=1**:
 \[x^2 - y + 4 = 0 \]
 \[y = x^2 + 4 \]

- **y=1**:
 \[x^2 - 1 + 4z^2 = 0 \]
 \[x^2 + 4z^2 = 1 \]

- **x=1**:
 \[1 - y + 4z^2 = 0 \]
 \[y = 4z^2 + 1 \]

"Elliptic paraboloid"
Quadratic Surfaces
General quadratic (2nd degree) in three variables

\[Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0 \]

Ex/ Sphere \[x^2 + y^2 + z^2 = 4 \]

For sketching:
- Fluid intercepts:
 - x-int (when \(y, z = 0 \))
 - y-int (when \(x, z = 0 \))
 - z-int (when \(x, y = 0 \))

Ex/ Ellipsoid \[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \]

Fluid traces:
- xy-trace
- xz-trace
- yz-trace
- others \(x = k, y = k, z = k \)...

Ex/ Elliptic Cone \[y^2 = x^2 + \frac{z^2}{4} \]

Intercepts?
- Only \((0, 0, 0) \) Try it?

Trace
- \(y = 1 \) \((\pm 1)^2 = x^2 + \frac{z^2}{4} \)
- \(y = -1 \)

xy-trace?
- \(z = 0 \)
- \(y^2 = x^2 \)
- or \(y = \pm |x| \)

x\(\bar{e}\)-trace?
- \(y = 0 \)
- \(0 = x^2 + \frac{z^2}{4} \)