Maximum/Minimum Problems

Definition
A function f has a local maximum value at (a,b) if $f(x,y) \leq f(a,b)$
for all (x,y) in the domain of f in some open disk centered at (a,b).

A function f has a local minimum value at (a,b) if $f(x,y) \geq f(a,b)$
for all (x,y) in the domain of f in some open disk centered at (a,b).

Local maximum and local minimum values are also called local extreme values or local extrema.

Note: If f has a local extrema at (a,b), then
the value is $f(a,b)$ ["how much", "how high/low"],
and it occurs at (a,b) ["where", "when"]

Theorem
If f has a local extreme value at (a,b) and if the partial
derivatives f_x and f_y exist at (a,b), then $f_x(a,b) = 0$ and $f_y(a,b) = 0$
[or simply $Df(a,b) = 0$]

Note: If f has a local extreme at (a,b) and f is differentiable
at (a,b), then (since $Df(a,b) = 0$) the tangent plane at (a,b)
is $z = f(a,b)$ (constant) which is a horizontal plane.

Definition - Critical Point
An interior point (a,b) in the domain of f is a critical point of f
if either

1. $f_x(a,b) = 0$ and $f_y(a,b) = 0$ [or $Df(a,b) = 0$]

 OR

2. one (or both) of f_x and f_y does not exist at (a,b)

Note: Local extreme at $(a,b) \Rightarrow (a,b) \text{ is a critical point}$

$(a,b) \text{ is a critical point} \Rightarrow$ Local extreme at (a,b)

$(a,b) \text{ is NOT a critical point} \Rightarrow \text{No local extreme at } (a,b)$
Finding critical points of $F(x,y)$.

Find all points (x,y) (in the interior of the domain of F) that satisfy $\nabla F(x,y) = \vec{0}$, or where f_x or f_y DNE.

\[\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases} \text{ involves solving a system of equations} \]

Ex: Find the critical points of $F(x,y) = (x^2-2x-8)(y+3)$

\[f_x(x,y) = (2x-2)(y+3), \quad f_y(x,y) = x^2-2x-8 \]

Solve $DF = \vec{0}$

1. $(2x-2)(y+3) = 0 \implies x = 1 \text{ or } y = -3$

2. \[x^2-2x-8 = 0 \]

Cases

\[x = 1 \text{ Sub into 2} \]

\[(1)^2-2(1)-8 = 0 \]

\[-9 = 0 \text{ No solution} \]

\[y = -3 \text{ Sub into 2} \]

\[x^2-2x-8 = 0 \]

\[(x-4)(x+2) = 0 \]

\[x = 4 \text{ or } x = -2 \]

Two solutions

\[(-2,-3) \text{ and } (4,-3) \]

Solve DF DNE

f_x and f_y are never undefined. No critical pts

Critical Points $(-2,-3)$ and $(4,-3)$
Ex/ Find the critical points of \(g(x,y) = \sqrt{3x^2 + y^2} \)

\[
\begin{align*}
 g_x(x,y) &= \frac{3x}{\sqrt{3x^2 + y^2}} \quad & g_y(x,y) &= \frac{y}{\sqrt{3x^2 + y^2}}
\end{align*}
\]

Solve \(\nabla g = \mathbf{0} \):

\[
\begin{align*}
 \frac{3x}{\sqrt{3x^2 + y^2}} &= 0 & \rightarrow & x = 0 \\
 \frac{y}{\sqrt{3x^2 + y^2}} &= 0 & \rightarrow & y = 0
\end{align*}
\]

But \((0,0)\) does not solve the system. Why? No solutions.

Solve \(\nabla g \text{ DNE} \):

\(g_x \) (and \(g_y \)) are undefined at \((0,0)\).

Note: \((0,0)\) is in the domain of \(g \)

Critical points \((0,0)\)

Ex/ Find the critical points of \(f(x,y) = \frac{1}{x^2 + y^2} \)

\[
\begin{align*}
 f_x(x,y) &= -\frac{2x}{(x^2+y^2)^2} \quad & f_y(x,y) &= -\frac{2y}{(x^2+y^2)^2}
\end{align*}
\]

Solve \(\nabla f = \mathbf{0} \):

No solution

Solve \(\nabla f \text{ DNE} \):

\((0,0)\)

But, \((0,0)\) is NOT in the domain of \(f \).

No critical points
Ex/
\[f(x, y) = x^2 - y^2 \]

\[f_x(x, y) = 2x, \quad f_y(x, y) = 2y \]
\[\sum 2x = 0 \quad \text{try it.} \]

Critical Points: \((0, 0)\)

Note: There is NO local extreme at \((0, 0)\)

for \(f(x, y) = x^2 - y^2 \)

Definition-

A function \(f \) has a saddle point at a critical point \((a, b)\)
if, in every open disk centered at \((a, b)\), there are points \((x, y)\)
for which \(f(x, y) > f(a, b) \) and points for which \(f(x, y) < f(a, b) \).

Theorem - Second Derivative Test

Suppose that the second partial derivatives of \(f \) are continuous
throughout an open disk centered at the point \((a, b)\), where \(f_x(a, b) = 0 \)
and \(f_y(a, b) = 0 \). Let \(D(x, y) = f_{xx}(x, y) f_{yy}(x, y) - [f_{xy}(x, y)]^2 \).

1) If \(D(a, b) > 0 \) and \(f_{xx}(a, b) < 0 \), then \(f \) has a local maximum
value at \((a, b)\).
2) If \(D(a, b) > 0 \) and \(f_{xx}(a, b) > 0 \), then \(f \) has a local minimum
value at \((a, b)\).
3) If \(D(a, b) < 0 \), then \(f \) has a saddle point at \((a, b)\).
4) If \(D(a, b) = 0 \), then the test is inconclusive.

Informal Proof

Consider the "concavity" of the surface at \((a, b)\) in the
direction of a unit vector \(\mathbf{u} = (\cos \theta, \sin \theta) \).
\[
\begin{align*}
D_\theta u(x,y) &= f_x(x,y) \cos \theta + f_y(x,y) \sin \theta \\
\text{"slope" in direction of } \vec{u} \\
D_\theta [D_\theta f(x,y)] &= (f_{xx}(x,y) \cos \theta + f_{yx}(x,y) \sin \theta) \cos \theta \\
&\quad + (f_{yy}(x,y) \cos \theta + f_{yx}(x,y) \sin \theta) \sin \theta \\
\text{(Assuming } f_{xy}, f_{yx} \text{ are continuous ...)} \\
D_\theta^2 f(x,y) &= f_{xx}(x,y) \cos^2 \theta + f_{xy}(x,y) \sin \theta \cos \theta + f_{yy}(x,y) \sin^2 \theta + 2f_{xy}(x,y) \cos \theta \sin \theta \\
\text{"concavity" in direction of } \vec{u} \\
\text{If } \sin \theta = 0 \text{ then } D_\theta^2 f &= f_{xx}(x,y) \cos^2 \theta \\
\text{so } f_{xx} > 0 \text{ or } f_{xx} < 0 \text{ determines concavity.} \\
\text{If } \sin \theta \neq 0 \text{ then ...} \\
D_\theta^2 f(x,y) &= f_{xx}(x,y) \cot^2 \theta + f_{yy}(x,y) + 2f_{xy}(x,y) \cot \theta \\
&= A \cot^2 \theta + 2B \cot \theta + C \\
&= Aw^2 + 2Bw + C \\
Aw^2 + 2Bw + C &> 0 \text{ for all } w \text{ when } 4B^2 - 4AC < 0 \text{ and } A > 0 \\
Aw^2 + 2Bw + C &< 0 \text{ for all } w \text{ when } 4B^2 - 4AC < 0 \text{ and } A < 0 \\
Aw^2 + 2Bw + C &> 0 \text{ for some } w \text{ and } Aw^2 + 2Bw + C < 0 \text{ for some } w \text{ when } 4B^2 - 4AC > 0 \\
Aw^2 + 2Bw + C &\geq 0 \text{ when } 4B^2 - 4AC = 0
\end{align*}
\]

(Note: $4B^2 - 4AC > 0$ if and only if $B^2 - AC > 0$)
Ex/ \[P(x,y) = (x^2 - 2x - 8)(y + 3) \]

(we found the critical points earlier)

\[f_x = (2x - 2)(y + 3), \quad f_y = x^2 - 2x - 8 \]

Crit. Pts: \((-2, -3), (4, -3)\)

\[f_{xx} = 2y + 6, \quad f_{xy} = 2x - 2, \quad f_{yy} = 0 \]

\[D(x,y) = (2y + 6)(0) - [2x - 2]^2 = -(2x - 2)^2 \]

At \((-2, -3)\)

\[D(-2, -3) = -(2(-2) - 2)^2 < 0 \]

So, saddle point at \((-2, -3)\).

At \((4, -3)\)

\[D(4, -3) = -(2(4) - 2)^2 < 0 \]

Saddle point at \((4, -3)\).

Ex/ \[g(x,y) = (x-3)^2 + (y+1)^2 \]

\[g_x = 2(x-3), \quad g_y = 2(y+1) \]

Crit. Pts: \((3, -1)\)

\[g_{xx} = 2, \quad g_{xy} = 0, \quad g_{yy} = 2 \]

\[D(x,y) = (2)(2) - [0]^2 = 4 \]

At \((3, -1)\)

\[D(3, -1) = 4 > 0 \]

And \[g_{xx}(3, -1) = 2 > 0 \]

So, \(g\) has a local minimum at \((3, -1)\).
Ex/ \(f(x, y) = x^4 + y^4 \)

\[f_x = 4x^3, \quad f_y = 4y^3 \]

Crit Pts: (0, 0)

\[f_{xx} = 12x^2, \quad f_{xy} = 0, \quad f_{yy} = 12y^2 \]

\[D(x, y) = (12x^2)(12y^2) - [0]^2 = 144x^2y^2 \]

At (0, 0)

\[D(0, 0) = 144(0)^2(0)^2 = 0 \]

Inconclusive

Ex/ \(f(x, y) = x^4y \)

\[f_x = 4x^3y, \quad f_y = x^4 \]

Crit Pts: (0, b) for any b

\[f_{xx} = 12x^2y, \quad f_{xy} = 4x^3, \quad f_{yy} = 0 \]

\[D(x, y) = (12x^2y)(0) - [4x^3]^2 = -16x^6 \]

At (0, b)

\[D(0, b) = -16(0)^6 = 0 \] Inconclusive

Definition -

If \(f(x, y) \leq f(a, b) \) for all \((x, y)\) in the domain of \(f \), then \(f \) has an absolute maximum value at \((a, b)\). If \(f(x, y) \geq f(a, b) \) for all \((x, y)\) in the domain of \(f \), then \(f \) has an absolute minimum value at \((a, b)\).

Theorem - Extreme Value Theorem for Functions of Two Variables

If \(f \) is continuous on a closed, bounded set \(R \) in \(\mathbb{R}^2 \), then \(f \) attains an absolute maximum value \(f(x_1, y_1) \) and an absolute minimum value \(f(x_2, y_2) \) at some points \((x_1, y_1)\) and \((x_2, y_2)\) in \(R \).
Procedure - Finding Absolute Extrema on a Closed, Bounded Set

Let \(f \) be continuous on a closed, bounded set \(R \) in \(\mathbb{R}^2 \).

To find the absolute maximum and minimum values of \(f \) on \(R \):

1) Determine the values of \(f \) at all critical points in \(R \).
2) Find the extreme values of \(f \) on the boundary of \(R \).
3) The greatest value found in steps 1 and 2 is the absolute maximum value of \(f \) on \(R \). The least value found in steps 1 and 2 is the absolute minimum value of \(f \) on \(R \).

Ex/ Find the absolute maximum and minimum values of

\[
 f(x,y) = (x-2)^2 + (y-1)^2 + 3 \quad \text{on the set } R = \{ (x,y) : 0 \leq x \leq 4, -1 \leq y \leq 3 \}
\]

1) Critical Points of \(f \) in \(R \):

\[
 \nabla f = \left< 2(x-2), 2(y-1) \right> \]

Solve \(\nabla f = \vec{0} \) and \(\nabla f \) DNE ...

Critical Point: \((2,1) \) in \(R \) \(\checkmark \) yes

\[
 f(2,1) = (2-2)^2 + (1-1)^2 + 3 = 3
\]

2) Boundary of \(R \) (a curve in the \(xy \)-plane; try to write \(f(x,y) \) as a function of one variable on a closed interval)

\[
 C_1 : x=4, -1 \leq y \leq 3 \\
 C_2 : y=3, 0 \leq x \leq 4 \\
 C_3 : x=0, -1 \leq y \leq 3 \\
 C_4 : y=-1, 0 \leq x \leq 4
\]
On C_1, \[x = 4 \text{ and } -1 \leq y \leq 3 \]

\[f(x, y) = f(4, y) = (4 - 2)^2 + (y - 1)^2 + 3 = (y - 1)^2 + 7 \]

and $-1 \leq y \leq 3$.

Let $g_1(y) = (y - 1)^2 + 7$ on $[-1, 3]$.

$g'_1(y) = 2(y - 1) \rightarrow$ crit number $y = 1$

Test $g_1(y)$ at end points $y = -1, y = 3$

and crit number $y = 1$

<table>
<thead>
<tr>
<th>y</th>
<th>$g_1(y)$</th>
<th>(x, y)</th>
<th>$f(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>11</td>
<td>$(4, -1)$</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>$(4, 3)$</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>$(4, 1)$</td>
<td>7</td>
</tr>
</tbody>
</table>

extreme values of f on C_1.

On C_2, \[y = 3 \text{ and } 0 \leq x \leq 4 \]

\[f(x, y) = f(x, 3) = (x - 2)^2 + (3 - 1)^2 + 3 = (x - 2)^2 + 7 \]

and $0 \leq x \leq 4$.

Let $g_2(x) = (x - 2)^2 + 7$

$g'_2(x) = 2(x - 2)$, ...

<table>
<thead>
<tr>
<th>x</th>
<th>$g_2(x)$</th>
<th>(x, y)</th>
<th>$f(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>$(0, 3)$</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>$(4, 3)$</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>$(2, 3)$</td>
<td>7</td>
</tr>
</tbody>
</table>

On C_2, ...

<table>
<thead>
<tr>
<th>y</th>
<th>$g_3(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

On C_4, ...

<table>
<thead>
<tr>
<th>x</th>
<th>$g_4(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>
Step 3:

<table>
<thead>
<tr>
<th>Inside R</th>
<th>(x, y)</th>
<th>$p(x,y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2, 1)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(4, -1)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(4, 1)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(0, 3)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(2, 3)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(0, -1)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(2, -1)</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Max value is 11
Absolute Min value is 3

Ex/ Find the absolute max and min values of $f(x,y) = (x-2)^2 + (y-1)^2 + 3$ on the set $R = \{ (x,y) : x^2 + y^2 \leq 9 \}$

1) Crit pts of f in R?

(as before...)

(2, 1) In R? $(2)^2 + (1)^2 \leq 9$ \checkmark

Yes.

$f(2,1) = 3$

2) Boundary of R

Parametrize $x = 3\cos t, y = 3\sin t, 0 \leq t \leq 2\pi$

\[g(t) = f(3\cos t, 3\sin t) = (3\cos t - 2)^2 + (3\sin t - 1)^2 + 3 \]
\[g'(t) = 2(3\cos t - 2)(-3\sin t) + 2(3\sin t - 1)(3\cos t) \]

\[= 12\sin t - 6\cos t \]

Solve \(g'(t) = 0 \) and \(g'(t) \text{ DNE} \ldots \)

\[12\sin t - 6\cos t = 0 \]
\[12\sin t = 6\cos t \]
\[\tan t = \frac{1}{2} \]
\[t = \tan^{-1} \frac{1}{2} \quad (\text{also } \pi + \tan^{-1} \frac{1}{2}) \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(g(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-5)</td>
</tr>
<tr>
<td>(\tan^{-1} \frac{1}{2})</td>
<td>(17 - 12 \cdot \frac{2}{5} - 6 \cdot \frac{1}{5} = 17 - \frac{30}{5} = \frac{17 - 6\sqrt{5}}{5})</td>
</tr>
<tr>
<td>(\pi + \tan^{-1} \frac{1}{2})</td>
<td>(17 - 12 \left(\frac{2}{5}\right) - 6 \left(\frac{1}{5}\right) = 17 + \frac{30}{5} = \frac{17 + 6\sqrt{5}}{5})</td>
</tr>
<tr>
<td>2\pi</td>
<td>5 (<\text{ not extreme value on boundary})</td>
</tr>
</tbody>
</table>

Step 3:

<table>
<thead>
<tr>
<th>Inside (R)</th>
<th>(2, 1)</th>
<th>(f(2, 1))</th>
<th>3</th>
<th>\text{Abs Min Value}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary</td>
<td>(3, 0)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{6}{5}, \frac{3}{15})</td>
<td>17 - 6\sqrt{5}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{-6}{5}, \frac{-3}{15})</td>
<td>17 + 6\sqrt{5}</td>
<td>\text{Abs Max Value}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Try it again using \(y = \sqrt{9 - x^2} \) and \(y = -\sqrt{9 - x^2} \) to describe the boundary.]
Ex/ Find extreme values of \(f(x,y) = x^2 + y^2 \) on the set \(R = \{(x,y) : x^2 + y^2 < 4\} \)

\[f(0,0) = 0 \]

Absolute Max Value? None! why?

Absolute Min Value is 0 at (0,0)

[Try using the Second Derivative Test to show it is a Local minimum.]

Ex/ \(f(x,y) = x^2 + y^2 \) on \(R = \{(x,y) : x, y > 0\} \)

\[\text{NOT closed, NOT bounded} \]

No critical points in R. (why?)

No Abs Max
No Abs Min.