Lines and Curves in Space

Vector-Valued Function

\[\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle \]

One variable input, \(t \).
Output is a vector, \(\mathbf{r}(t) \).

Ex/ \(\mathbf{r}(t) = \langle t, t+2 \rangle \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\mathbf{r}(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>0</td>
<td>(0, 2)</td>
</tr>
<tr>
<td>1</td>
<td>(1, 3)</td>
</tr>
<tr>
<td>2</td>
<td>(2, 4)</td>
</tr>
</tbody>
</table>

If we use the position vector for \(\mathbf{r}(t) \), we would have

Moreover, we can relate these position vectors to the points at the head of the vectors

This yields a parametric curve

\[(t, t+2) \]

\[x = t, \ y = t+2 \]
Lines in Space

The line \(l \) through the 2 points
\[P(x_0, y_0, z_0) \]
\[Q(x_1, y_1, z_1) \]
\[\vec{PQ} = (x_1 - x_0, y_1 - y_0, z_1 - z_0) \]
\[\text{a direction vector for} \ l \]

Let \(a = x_1 - x_0 \)
\[b = y_1 - y_0 \]
\[c = z_1 - z_0 \]
Then \(\vec{v} = (a, b, c) \) is a direction vector for \(l \).

Any point on \(l \) can be represented by
\[\vec{r} = \vec{r}_0 + t\vec{v} \]
where \(t \) is some scalar.

Equation of a Line

passing through the point \(P(x_0, y_0, z_0) \) in the direction of vector \(\vec{v} = (a, b, c) \) is \(\vec{r} = \vec{r}_0 + t\vec{v} \), or
\[\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle, \quad -\infty < t < \infty \]

Equivalently, the parametric equations of the line are
\[x = x_0 + at \]
\[y = y_0 + bt \]
\[z = z_0 + ct \]
\[-\infty < t < \infty \]
Ex/ Find an equation of the line passing through the point \(P(-3, 2, 0) \) that is perpendicular to the vectors \(\vec{u} = <-1, 1, 0> \) and \(\vec{w} = <2, 0, 1> \).

Need a point \(\vec{P}_0 = <-3, 2, 0> \).

2) the direction \(\vec{v}? \)

We can use \(\vec{u} \times \vec{w} \) (why?)

\[
\begin{vmatrix}
\vec{u} & \vec{w} & k \\
2 & 1 & 0 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{vmatrix}
\]

\[
\vec{u} \times \vec{w} = (1-0)i - (-1-0)j + (0-2)k
\]

\[
= <1, 1, -2>
\]

Thus,

\[
\vec{v} = <-3, 2, 0> + t <1, 1, -2>
\]

or \[
\begin{align*}
x &= -3 + t \\
y &= 2 + t \\
z &= -2t
\end{align*}
\]

Ex/ Find an equation of the line passing through the point \(P(5, 2, -1) \) that is parallel to the line \(\vec{r}(t) = <6-t, 3+2t, 7t> \).

1) a point \(\vec{P}_0 = <5, 2, -1> \).

2) direction \(\vec{v}? \) rewrite

\[
\vec{v} = <6, 3, 0> + t <1, 2, 7>
\]

Thus

\[
\vec{r}(t) = <5, 2, -1> + t <-1, 2, 7>
\]
Equation of a line segment between \(P(x_0, y_0, z_0) \) and \(Q(x_1, y_1, z_1) \):

A point \(P(x_0, y_0, z_0) \)

direction \(\vec{v} = \overrightarrow{PQ} = \langle x_1-x_0, y_1-y_0, z_1-z_0 \rangle \)

\[
\vec{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle x_1-x_0, y_1-y_0, z_1-z_0 \rangle
\]

Segment between \(P \) and \(Q \) \(\Rightarrow \quad 0 \leq t \leq 1 \)

Why? check

Ex/ Does the line \(\vec{r}(t) = \langle 3+2t, 1-2t, 6+2t \rangle \) pass through the point \((5,5,5) \)?

\[
\begin{align*}
5 &= 3+2t \\
5 &= 1-2t \\
5 &= 6+2t
\end{align*}
\]

Solve for \(t \)

\(t = 2 \)

Sub into 2 \(\Rightarrow \)

\(5 = 1 - 2(2) \)

\(5 = -1 \) \(\text{NO} \)

What about the point \((4, -1, 8) \)?

\[
\begin{align*}
4 &= 3+2t \\
1 &= 1-2t \\
8 &= 6+2t
\end{align*}
\]

\(t = 1 \)

Yes, when \(t = 1 \)

Ex/ Do the following lines intersect?

\[
\begin{align*}
\vec{r}_1(t) &= \langle 2t, 1-t, 4+t \rangle \\
\vec{r}_2(s) &= \langle 3-5s, 7-2s, 1+s \rangle
\end{align*}
\]
Solve \(2t = 3 - s \) \[\Rightarrow s = 3 - 2t \]
\(1-t = 7 - 2s \)
\(4 + t = 1 + s \)

Solve into (2)

\(1-t = 7 - 2(3-2t) \)
\(1-t = 7 - 6 + 4t \)
\(5t = 0 \)
\(t = 0 \) then \(s = 3 - 2(0) = 3 \)
check in (3)
\(4 + (0) = 1 + (3) \)

\[\begin{align*}
\vec{v}(0) &= \langle 0, 1, 4 \rangle \\
\vec{v}(3) &= \langle 0, 1, 4 \rangle
\end{align*} \]

Yes, at the point \((0,1,4)\)

Note: Nonparallel lines might NOT intersect in IR^3 (these lines are said to be skew.)

Example: Project the line segment \(\vec{v}(t) = \langle 2 + t, 4-t, 3 + 2t \rangle, 0 \leq t \leq 1 \)
onto the xy-plane.

In the xy-plane, \(z = 0 \).

The projection is then \(x = 2 + t, y = 4 - t, z = 0, 0 \leq t \leq 1 \)

We can eliminate the parameter to get
\[t = 4 - y \rightarrow x = 2 + (4 - y) \]
\(0 \leq 4 - y \leq 1 \rightarrow -1 \leq y - 4 \leq 0 \rightarrow 3 \leq y \leq 4 \)
\[y = -x + 6 \]
\[3 \leq y \leq 4 \]
\[(6y, 2 \leq x \leq 3) \]

\[(2,3,0) \]
\[(2,4,0) \]
\[(2,4,3) \]
\[(3,3,5) \]
Curves in Space

\(\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle \)

or \(x(t)^2 + y(t)^2 + z(t)^2 \)

on an interval \(a \leq t \leq b \)

The Domain of \(\mathbf{r}(t) \) is the largest set of values of \(t \) for which all of \(x(t), y(t), \) and \(z(t) \) are defined.

The orientation of the curve, \(C \), is the positive direction of \(C \). The positive (or forward) direction is the direction in which the curve is generated as the parameter increases.

\[\text{Ex: } \mathbf{r}(t) = \langle \cos t, \sin t, 3 \rangle, \ 0 \leq t \leq 2\pi \]

\[\text{Ex: } \mathbf{r}(t) = \langle \cos t, 3, \sin t \rangle, \ 0 \leq t \leq 2\pi \]
Ex/ \ \overrightarrow{r}(t) = \langle 2 \cos t, 2 \sin t, t \rangle, \ 0 \leq t < \infty

Projection on xy-plane
\langle 2 \cos t, 2 \sin t, 0 \rangle

Projection on xz-plane
\langle 2 \cos t, 0, t \rangle

Projection on yz-plane
\langle 0, 2 \sin t, t \rangle

Ex/ Find the domain of \overrightarrow{r}(t) = \frac{3}{t+2} \overrightarrow{i} - \sqrt{t+6} \overrightarrow{j} + e^{t} \overrightarrow{k}

\frac{3}{t+2} \rightarrow \text{Domain} \rightarrow -2

-\sqrt{t+6} \rightarrow \text{Domain} \rightarrow -6

e^{t} \rightarrow \text{Domain} \rightarrow -

Thus, Domain of \overrightarrow{r}(t)
\left[-6, -2 \right) \cup \left(-2, \infty \right)
Definition - Limit of a Vector-Valued Function

A vector-valued function \(\vec{r} \) approaches the limit \(\vec{L} \) as \(t \) approaches \(a \), written

\[
\lim_{t \to a} \vec{r}(t) = \vec{L}
\]

provided

\[
\lim_{t \to a} |\vec{r}(t) - \vec{L}| = 0
\]

Suppose that \(\vec{L} = \langle L_1, L_2, L_3 \rangle \), \(\vec{r}(t) = \langle x(t), y(t), z(t) \rangle \) and

\[
\begin{align*}
\lim_{t \to a} x(t) &= L_1 \\
\lim_{t \to a} y(t) &= L_2 \\
\lim_{t \to a} z(t) &= L_3
\end{align*}
\]

Then

\[
\lim_{t \to a} \vec{r}(t) = \left(\lim_{t \to a} x(t), \lim_{t \to a} y(t), \lim_{t \to a} z(t) \right) = \langle \lim_{t \to a} x(t), \lim_{t \to a} y(t), \lim_{t \to a} z(t) \rangle = \langle L_1, L_2, L_3 \rangle
\]

Prove that

\[
\lim_{t \to a} |\vec{r}(t) - \vec{L}| = 0 \quad \text{if and only if} \quad \ast
\]

Note: This is a (scalar) real-valued function of \(t \).

Note:

\[
\lim_{t \to a} (\vec{r}(t) + \vec{s}(t)) = \lim_{t \to a} \vec{r}(t) + \lim_{t \to a} \vec{s}(t)
\]

\[
\lim_{t \to a} c \vec{r}(t) = c \lim_{t \to a} \vec{r}(t)
\]

provided \(\lim_{t \to a} \vec{s}(t) \) and \(\lim_{t \to a} \vec{r}(t) \) exist.
Continuity

\[\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k} \]

is continuous at \(t = a \) provided

1) \(\lim_{t \to a} \vec{r}(t) \) exists

2) \(\vec{r}(a) \) exists

3) \(\lim_{t \to a} \vec{r}(t) = \vec{r}(a) \)

\(\vec{r}(t) \) is continuous on an interval \(I \) if it is continuous for all \(t \) in \(I \).

Ex:

\[\vec{r}(t) = \frac{\sin t}{t} \hat{i} + \ln(3+t) \hat{j} + e^t \hat{k} \]

Then

\[\lim_{t \to 0} \vec{r}(t) = \left(\lim_{t \to 0} \frac{\sin t}{t} \right) \hat{i} + \left(\lim_{t \to 0} \ln(3+t) \right) \hat{j} + \left(\lim_{t \to 0} e^t \right) \hat{k} \]

\[= \hat{i} + \ln 3 \hat{j} + \hat{k} \] or \(<1, \ln 3, 1> \)

Also, \(\vec{r}(0) \) is undefined (why?)

So, \(\vec{r}(t) \) is not continuous at \(t = 0 \)

[at \(<1, \ln 3, 1> \)]

\(\vec{r}(t) \) is continuous on its domain

which is \((-3, 0) \cup (0, \infty) \)
Ex/ \ \vec{r}(t) = \cos\left(\frac{t\pi}{t^2+1}\right) \hat{i} + \sin\left(\frac{t\pi}{t^2+1}\right) \hat{j} + \frac{\pi}{t^2+1} \hat{k}, \ t \geq 0

\lim_{t \to \infty} \vec{r}(t) = \left(\lim_{t \to \infty} \cos\left(\frac{t\pi}{t^2+1}\right)\right) \hat{i} + \left(\lim_{t \to \infty} \sin\left(\frac{t\pi}{t^2+1}\right)\right) \hat{j} + \left(\lim_{t \to \infty} \frac{\pi}{t^2+1}\right) \hat{k}

= \cos 0 \hat{i} + \sin 0 \hat{j} + 0 \hat{k} = <1, 0, 0>

\vec{r}(t) \text{ is continuous for all } t > 0 \text{ (why?)}

Ex/ Find the points at which the curve \(\vec{r}(t) = \langle \cos t, \sin t, \sin(2t) \rangle \) intersects the plane \(z = \frac{1}{2} \).

Solve for \(t \) \quad \begin{align*}
\frac{1}{2} &= \sin(2t) \\
2t &= \frac{\pi}{2} + 2k\pi \text{ or } 2t = \frac{3\pi}{2} + 2k\pi \\
t &= \frac{\pi}{4} + k\pi \text{ or } t = \frac{3\pi}{4} + k\pi
\end{align*}

when...

\(t = \frac{\pi}{12} \rightarrow (x = \cos \frac{\pi}{12}, y = \sin \frac{\pi}{12}, z = \frac{1}{2}) \quad \text{(cos} \frac{\pi}{12}, \sin \frac{\pi}{12}, \frac{1}{2})

\(t = \frac{5\pi}{12} \rightarrow (x = \cos \frac{5\pi}{12}, y = \sin \frac{5\pi}{12}, z = \frac{1}{2}) \quad \text{(cos} \frac{5\pi}{12}, \sin \frac{5\pi}{12}, \frac{1}{2})

\(t = \frac{13\pi}{12} \rightarrow (\cos \frac{13\pi}{12}, \sin \frac{13\pi}{12}, \frac{1}{2}) \quad \text{[4 points in total]}

\(t = \frac{19\pi}{12} \rightarrow (\cos \frac{19\pi}{12}, \sin \frac{19\pi}{12}, \frac{1}{2}) \)