Brenier’s polar factorization theorem and McCann’s generalization

Osman Berat Okutan

The Ohio State University

03/17/2018
Theorem (Brenier's factorization theorem)

Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain and $s: \Omega \to \mathbb{R}^n$ be a Borel map which does not map positive volume into zero volume. Then s uniquely decomposes into the form $s = t \circ u$, where $u: \Omega \to \Omega$ is a volume preserving map and $t = \nabla \psi: \mathbb{R}^n \to \mathbb{R}^n$ is the gradient of a convex function $\psi: \mathbb{R}^n \to \mathbb{R}$.

McCann generalizes this result to Riemannian manifolds.

Question: What is the relation between this and optimal transport?

Answer: Proof depends on the solution of Monge-Kantorovich problem.
Theorem (Brenier’s factorization theorem)

Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain and $s : \Omega \to \mathbb{R}^n$ be a Borel map which does not map positive volume into zero volume. Then s uniquely decomposes into the form

$$s = t \circ u,$$

where $u : \Omega \to \Omega$ is a volume preserving map and

$$t = \nabla \psi : \mathbb{R}^n \to \mathbb{R}^n$$

is the gradient of a convex function $\psi : \mathbb{R}^n \to \mathbb{R}$.

McCann generalizes this result to Riemannian manifolds.

Question: What is the relation between this and optimal transport?

Answer: Proof depends on the solution of the Monge-Kantorovich problem.
Theorem (Brenier’s factorization theorem)

Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain and $s : \Omega \to \mathbb{R}^n$ be a Borel map which does not map positive volume into zero volume. Then s uniquely decomposes into the form

$$s = t \circ u,$$

where

$u : \Omega \to \Omega$ is a volume preserving map and

$$t = \nabla \psi : \mathbb{R}^n \to \mathbb{R}^n$$

is the gradient of a convex function

$$\psi : \mathbb{R}^n \to \mathbb{R}.$$

McCann generalizes this result to Riemannian manifolds.
Theorem (Brenier’s factorization theorem)

Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain and $s : \Omega \to \mathbb{R}^n$ be a Borel map which does not map positive volume into zero volume. Then s uniquely decomposes into the form

$$s = t \circ u,$$

where

$u : \Omega \to \Omega$ is a volume preserving map and

$$t = \nabla \psi : \mathbb{R}^n \to \mathbb{R}^n$$

is the gradient of a convex function $\psi : \mathbb{R}^n \to \mathbb{R}$.

McCann generalizes this result to Riemannian manifolds.

Question: What is the relation between this and optimal transport?
Theorem (Brenier’s factorization theorem)

Let \(\Omega \subset \mathbb{R}^n \) be a bounded smooth domain and \(s : \Omega \to \mathbb{R}^n \) be a Borel map which does not map positive volume into zero volume. Then \(s \) uniquely decomposes into the form

\[s = t \circ u, \text{ where} \]

\[u : \Omega \to \Omega \text{ is a volume preserving map and} \]

\[t = \nabla \psi : \mathbb{R}^n \to \mathbb{R}^n \text{ is the gradient of a convex function} \]

\[\psi : \mathbb{R}^n \to \mathbb{R}. \]

- McCann generalizes this result to Riemannian manifolds.

- **Question:** What is the relation between this and optimal transport?

- **Answer:** Proof depends on the solution of Monge-Kantorovich problem.
Monge problem

- Let M be a (topological) space and μ, ν be (Borel) measures on M. Let $c : M \times M \rightarrow [0, \infty]$ be a function (it is called the cost function.)
Monge problem

- Let M be a (topological) space and μ, ν be (Borel) measures on M. Let $c : M \times M \to [0, \infty]$ be a function (it is called the cost function.)
- The set of all transport maps from μ to ν is defined as follows:

 $S(\mu, \nu) := \{ G : M \to M : G_*(\mu) = \nu \}$.

- Monge problem is finding the cost minimizing transport map G.
- Existence of the solution depends on properties c. In this presentation we assume that M is a metric space and $c = d^2 / 2$.

Monge problem

- Let M be a (topological) space and μ, ν be (Borel) measures on M. Let $c : M \times M \to [0, \infty]$ be a function (it is called the cost function.)

- The set of all transport maps from μ to ν is defined as follows:

$$S(\mu, \nu) := \{ G : M \to M : G_*(\mu) = \nu \}.$$

- The cost of a transport map $G \in S(\mu, \nu)$ is defined by

$$C(G) = \int_M c(x, G(x)) d(\mu(x)).$$
Monge problem

- Let M be a (topological) space and μ, ν be (Borel) measures on M. Let $c : M \times M \to [0, \infty]$ be a function (it is called the cost function.)

- The set of all transport maps from μ to ν is defined as follows:

$$S(\mu, \nu) := \{ G : M \to M : G_*(\mu) = \nu \}.$$

- The cost of a transport map $G \in S(\mu, \nu)$ is defined by

$$C(G) = \int_M c(x, G(x))d(\mu(x)).$$

- Monge problem is finding the cost minimizing transport map G.
Monge problem

Let M be a (topological) space and μ, ν be (Borel) measures on M. Let $c : M \times M \to [0, \infty]$ be a function (it is called the cost function.)

The set of all transport maps from μ to ν is defined as follows:

$$S(\mu, \nu) := \{ G : M \to M : G_*(\mu) = \nu \}.$$

The cost of a transport map $G \in S(\mu, \nu)$ is defined by

$$C(G) = \int_M c(x, G(x))d(\mu(x)).$$

Monge problem is finding the cost minimizing transport map G.

Existence of the solution depends on properties c. In this presentation we assume that M is a metric space and $c = d^2/2$.
Kantorovich problem

Let $p, q : M \times M \to M$ denote the projection onto the first coordinate and second coordinate respectively. The set of all transport plans from μ to ν is defined by

$$\Gamma(\mu, \nu) := \{\gamma \text{ a Borel measure on } M \times M : p_*(\gamma) = \mu, q_*(\gamma) = \nu\}.$$
Kantorovich problem

- Let $\Gamma(\mu, \nu) := \{\gamma \text{ a Borel measure on } M \times M : p_*(\gamma) = \mu, q_*(\gamma) = \nu\}$. The mathematical term for a transport plan is a coupling.
Kantorovich problem

- M, μ, ν, c as above. Let $p, q : M \times M \to M$ denote the projection onto the first coordinate and second coordinate respectively. The set of all transport plans from μ to ν is defined by

$$\Gamma(\mu, \nu) := \{\gamma \text{ a Borel measure on } M \times M : p_*(\gamma) = \mu, q_*(\gamma) = \nu\}.$$

- The mathematical term for a transport plan is a coupling.
- The cost of a transport plan γ is defined by

$$C(\gamma) = \int_{M \times M} c(x, y) d(\gamma(x, y)).$$
Kantorovich problem

- M, μ, ν, c as above. Let $p, q : M \times M \to M$ denote the projection onto the first coordinate and second coordinate respectively. The set of all transport plans from μ to ν is defined by

$$\Gamma(\mu, \nu) := \{ \gamma \text{ a Borel measure on } M \times M : p_*(\gamma) = \mu, q_*(\gamma) = \nu \}.$$

- The mathematical term for a transport plan is a coupling.

- *The cost of a transport plan* γ is defined by

$$C(\gamma) = \int_{M \times M} c(x, y)d(\gamma(x, y)).$$

- Kantorovich problems is finding the cost minimizing transport plan.
Kantorovich problem is a relaxation of the Monge problem in the following sense:
The map $S(\mu, \nu) \to \Gamma(\mu, \nu)$ given by $G \mapsto (id_M \times G)_*(\mu)$ is a cost preserving embedding.
Kantorovich problem is a relaxation of the Monge problem in the following sense:
The map \(S(\mu, \nu) \rightarrow \Gamma(\mu, \nu) \) given by \(G \mapsto (id_M \times G)_*(\mu) \) is a cost preserving embedding.

The image of the map above is the set of measures in \(\Gamma(\mu, \nu) \) whose support is a graph.
Relation between Monge and Kantarovich Problem

- Kantorovich problem is a relaxation of the Monge problem in the following sense:
 The map $S(\mu, \nu) \to \Gamma(\mu, \nu)$ given by $G \mapsto (id_M \times G)_*(\mu)$ is a cost preserving embedding.

- The image of the map above is the set of measures in $\Gamma(\mu, \nu)$ whose support is a graph.

- $\Gamma(u, v)$ is a convex subset of a Banach space (i.e. dual space of the continuous functions $(C(M \times M), l_\infty)$). This is helpful for showing the existence and uniqueness of solutions.
Existence of Monge solutions, uniqueness of Kantorovich solutions

Let M be an n-dimensional connected compact Riemannian manifold, and μ, ν be Borel measures on M. Then there is a convex potential function $\psi : M \to \mathbb{R}$ such that

- $G(x) := \exp_x(\nabla \psi)$ is a transport map.
- G is the only transport map arising this way. It solves Monge’s problem.
- Kantorovich problem has a unique solution.
- Kantorovich problem is obtained from G.
McCann’s Factorization Theorem

Let M be a connected compact Riemannian manifold. Let $s : M \to M$ be a Borel map which never maps positive volume into zero volume. Then s factors uniquely into the form $s = t \circ u$, where

$u : M \to M$ is a volume preserving map and

$t = \exp(\nabla \psi) : M \to M$

where ψ is a convex function $\psi : M \to \mathbb{R}$.
Idea of Proof

- Let μ be the Riemannian volume measure on M and let $\nu = s_*(\mu)$.

- Let t be the solution of the Monge problem $S(\mu, \nu)$ arising from the potential $\psi : M \to \mathbb{R}$.

- Let t^* be the solution of the Monge problem $S(\nu, \mu)$. Show that t, t^* are inverses almost everywhere.

- Let $u = t^* \circ s$.

- Then $t \circ u = s$, μ almost everywhere. Furthermore $u^*(\mu) = t^* \circ s^*(\mu) = t^* \circ \nu = \mu$, hence u is measure preserving.
Let μ be the Riemannian volume measure on M and let $\nu = s_*(\mu)$.

Let t be the solution of the Monge problem $S(\mu, \nu)$ arising from the potential $\psi : M \to \mathbb{R}$.
Let μ be the Riemannian volume measure on M and let $\nu = s_*(\mu)$.

Let t be the solution of the Monge problem $S(\mu, \nu)$ arising from the potential $\psi : M \to \mathbb{R}$.

Let t^* be the solution of the Monge problem $S(\nu, \mu)$. Show that t, t^* are inverses almost everywhere. Let $u = t^* \circ s$.
Idea of Proof

- Let μ be the Riemannian volume measure on M and let $\nu = s_*(\mu)$.
- Let t be the solution of the Monge problem $S(\mu, \nu)$ arising from the potential $\psi : M \to \mathbb{R}$.
- Let t^* be the solution of the Monge problem $S(\nu, \mu)$. Show that t, t^* are inverses almost everywhere. Let $u = t^* \circ s$.
- Then $t \circ u = s$, μ almost everywhere. Furthermore $u_*(\mu) = t^*_s(\mu) = t^*(\nu) = \mu$, hence u is measure preserving.