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Metric space

Definition 1.1. A metric space is a pair (X,dx) where X is a set and
dx : X x X - RT with

e dx(z,2') =0 if and only if z = 2’

o dx(z,2') =dx(2',x) for all x,2" € X.

o dy(z,2") <dx(z,2') +dx(a/,2") for all x,2’, 2" € X.
One says that dx is the metric or distance on X.

If dx satisfies all but the first condition above, one says that dx is a semi-metric
on X.

| will frequently refer to a metric space X with the implicit assumption that its
metric is denoted by dx.

Remark 1.1 (Distance to a set). Let S < X. We define the distance to S,
dx(,S): X - R* by
x> inf dx(z,s).
seS
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Examples

Example 1.1 (Restriction metric). Q ¢ R"™ and dg(w,w’) = |w — '|.

Example 1.2 (S"). Spheres S” with “intrinsic” metric. Consider S < R"*1

and for x, 2’ € S™ this metric is given by

dgn (z,2") = 2 arcsin

Example 1.3 (Ultrametrics). Finite set X and v : X x X — R* which is

symmetric and

u(z,2”) < max (u(z,2'),u(z’,2")) for all z,2’,2" € X.

((ug) =

Ultrametrics appear in many applications, including hierarchical clustering

(dendrograms).
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Compact metric spaces

Definition 1.2. Let X be a metric space and € > 0. A set S ¢ X is called
an e-net for X if dx(z,5) <eforall z € X.

X is called totally bounded if for any € > 0 there is a finite e-net for X.

Definition 1.3. For a given € > 0 a set S in a metric space X is called
e-separated if dx(s,s’) = ¢ for all s,s" € S.

Excercise 1. Prove that

L. if there exists a 5-net for X with cardinality n, then an e-separated set
in X cannot contain more than n points.

2. A maximal separated e-set is an e-net.
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A question about nets

An open covering of a topological space is any collection U of open sets such ik G meide
spaces
that UUEZ/{ = X Some invariants of
metric spaces
Recall that (by definition) a compact topological space X is one for which any gl
. . . . . metric spaces: a irst
open covering has a finite sub-collection that still covers X. attempt
Geodesic metric
Also, recall that a complete metric space is one for which Cauchy sequences shacss
B . . Diffe I f
converge. The sequence {x,}, < X is Cauchy, if for any € > 0 there exists metric spaces
N eNsit. dx(zp,zm) <e forall n,m > N. *

Theorem 1.1. Let X be a metric space. Then, X is compact if and only if
X is complete and totally bounded.

We denote by G (for Gromov) the collection of all compact metric spaces.
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Hausdorff distance

Let X be a metric space. For a set S ¢ X we denote by B.(S) the set of all
points x such that dx (z,S) <e.

Definition 1.4 (Hausdorff distance). Let A, B € 2X. The Hausdorff distance
between A and B is defined by

d3; (A, B) := inf{e > 0| A = B.(B)and B = B.(A)}.

Excercise 2. Prove that

d% (A, B) = max (sup dx(a, B),sup dx (b, A)) )
acA beB

Proposition 1.1. Let X be a metric space. Then

1. dﬁ(,) is a semi-metric on 2.
2. dﬁ(A,Z) =0 for any A c X.

3. If A,B c X are closed and dﬁ (A,B) =0, then A = B.
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Hausdorff distance, cont'd

Let C(X) denote the collection of all closed subsets of X. Then, we have that
(C(X),d3(,)) is a metric space. Furthermore, one has

Theorem 1.2 (Blaschke). If (X, dx) is compact, then (C(X),d3(,)) is also
compact.

That is, we have an application H: G — G

(X,dx) = (C(X), dy (,)).
Remark 1.2. For a given S < X, let
CovRadx (S5) :=inf{e > 0| X < B.(5)}.

Clearly, CovRadx (S) = dj; (S, X).
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Matlab code for Hausdorff distance

Try coding the Hausdorff distance between finite subsets of the plane in Matlab.
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Minimal e-nets in (compact) metric spaces

Lemma 1.1 (Marriage Lemma). Let Z and Z' be finite sets with a relation
K < Z x Z' such that for any A < Z, |K(A)| = |A|. Then, there exists a
bijection ¢ : Z — Z' with (z,0(z)) € K for all z € Z.

Proposition 1.2. Fiz ¢ > 0 and assume S,S" are two minimal e-nets in
X (assumed to be compact) with n = n(e) points each. Then, there exists a
bijection o : S — S’ s.t. maxses dx (s, p(s)) < 2e.

Proof. Let R c S x S’ be given by all those (s,s’) s.t. Be(s) n Be(s') # . Pick any

A c S and note that
R(A):= [ J{s' € 9| (a,s) € R}
acA

is s.t. |R(A)| = |A|. Otherwise, consider N := R(A) u (S\A). Clearly, N is an e-net for
X and |N| < n(e)— this contradicts the fact that n(e) is the minimal cardinality amongst
all e-nets of X. Then, apply the Marriage Lemma to conclude that there exists a bijection
p: S —> 8 st (s,0(s)) € R for all s € S. This means that B:(s) n B:(¢(s)) # & and
hence d(s, ¢(s)) < 2e. O
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Definition 1.5 (Distortion). Let (X, dx) and (Y,dy) be metric spaces and =

f:X — Y amap. The distortion of f is defined as Compact metric
spaces
. Hausdorff distance
dls(f) = Sup |dX (x’ .]jl) - dy(f(l‘), f(x/))| A question about nets
z,x'eX
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spaces
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We say that a map f: X — Y is distance preserving whenever dis(f) = 0.

An isometry between X and Y is any bijective map f : X — Y which is in
addition distance preserving. One says that two metric spaces are isometric if
there exists an isometry between them.

The set Iso(X) of all isometries f : X — X is called the isometry group of X. P 12



Isometry: the case of Euclidean sets

If X and Y in the definition of isometry are both R?, then we are looking at
maps T : R? — R? such that |T(p) — T(q)| = |p — ¢l for all points p, q € RY.

All such T arise as the composition of a translation and a orthogonal transfor-
mation. The set of all such maps is denoted E(d) and is called the Euclidean
Group. If we choose (canonical basis) coordinates on R?, then any T' € E(d)
can be represented as T'(p) = Qp+ b where @Q is a d x d orthogonal matrix (i.e.
Q QT =) and b is (translation) vector.

If Q is an orthogonal matrix, then ||@Q p| = ||p| for all points p. This means that
whenever T € E(d), then < T(p),T(q) >=< p, q > for all points p, q.
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Isometry: the case of finite Euclidean sets

Lemma 1.2 (Folklore Lemma). Let A = {ai,a9,...,a,} and B =
{b1,b2,...,by} two sets in RY such that |a; — aj| = ||bi — b;|| for all
i,j=1,...,n. Then, there exists an isometry of ambient space T : R* — R?

such that b; = T'(a;) for each i.

This is actually quite interesting: from purely intrinsic information (the interpoint
distances of points in A and B we can deduce the existence of an extrinsic object
(the transformation T') with strong properties. This happens because we are
assuming that both A and B are “special”, namely they live in Euclidean space.

Excercise 3. Try to prove this theorem for youself. Or try to find and study
the proof.
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Isometric embedding ST
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Definition 1.6. A map f : X — Y between metric spaces X and Y is an Maps between metric

spaces
isometric embedding of X into Y if f(X) c Y endowed with the restriction Some invariants of
of the metric from Y is isometric to X. metre spaces

Approximation of
metric spaces: a first

Example 1.4. S? with the intrinsic metric does not admit an isometric G
embedding into any R*, k € N. Geodesic meri

Different classes of

Excercise 4 (Kuratowski’s embedding). Let X be a compact metric space. TIaHle RS
Consider (C(X), || =), the metric space of all real valued continuous func-
tions on X, where the metric is the L® norm. Attach to each x € X the
function f, := dx(-,x): X — R*. Then,

|fe = forloo = dx(x,2")  for all z,2" € X.



Lipschitz maps and dilatation

Definition 1.7. A map f : X — Y between metric spaces X and Y is called
Lipschitz if there exists L > 0 s.t.

dy (f(z), f(2") < L-dx(z,2') forall z,2' € X.

Any such L is called a Lipschitz constant for f. The minimal Lipschitz
constant of a map f is called the dilatation of f and denoted dil(f).

A map with Lipschitz constant 1 is called non-expanding.
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Distance preserving maps in compact spaces
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A compact metric space cannot be isometric to a proper subset of itself.
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metric spaces

Theorem 1.3. Let X be a compact metric space and f : X — X be a A
distance preserving map. Then f(X) = X. metric spaces: a first

attempt

Geodesic metric
spaces

Proof.  Assume p e X\f(X). Since f(X) is compact (and hence closed) there exists ¢ > 0 )
s.t. Be(p) n f(X) = . Let n be the maximal cardinality of an ¢ separated set in X and z::f:r;:,:lzses of
S < X be an e-separated set with cardinality n. Then, f(S) is also e-separated. Also, "

and therefore f(.S) U {p} is also e-separated but with cardinality n + 1, which contradicts the
maximality of n. O



Non-expanding maps in compact spaces

Theorem 1.4. Let X be a compact metric space. Then,

1. Any non-expanding surjective map is an isometry.

2. If a map f: X — X is non-contracting: dx(f(z), f(z')) = dx(z,2")
for all z,x' € X, then f is an isometry.

Proof.  We prove (1). Assume p,q are such that dx (f(p), f(q)) < dx(p,q) for some
p,q € X. Fix such a pair of points and pick € > 0 s.t. dx(f(p), f(q)) < dx(p,q) — 5e. Let n
be such that there exists at least one e-net in X of cardinality n. Let N, € X" the collection
of all n-tuples of points that form e-nets in X. This set is closed in X and hence compact.
Define the function D : X™ — R¥ given by

(z1,...,2n) —

i

dx (x,zj).
1

AR

This function is continuous and therefore attains a minimum on A,,. Let S = (z1,...,Tn) €
N, be a minimizer. Since f is non-expanding and surjective then f(S) € N,,. Also, D(f(S)) <
D(S) and hence dx (z;, ;) = dx (f(z;), f(z;)) for all 4,5 € {1,...,n}.

Let ig and jo be s.t. dx (p,zs,),dx(q,2j,) < €. Then, one has dx (z;,,xj,) = dx (p,q) —2¢
and dx(f(zio), f(zj)) < dx(f(p),f(9)) + 2¢ < dx(p,q) — 3. This gives
dx (xig, o) > dx (f(xig), f(x4,)), a contradiction. O
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Diameter, inradius, etcetera

Let X € G. Define

e separation: X — sep (X) := min{dx(z,2'), z # 2'}.
e diameter: X — diam (X) := max, . dx(z,2’).
e inradius: X — rad (X) := min, max,s dx(z,z’).

e eccentricity: X — eccx : X — RT. It is given by eccx(z) =
max, dx(z,2'), z € X.

e curvature sets: (X, k) — Kj(X) c (R+)’”k, the collection of all k x k
symmetric matrices (dx (z;,z;))) where (z1,2,...,2;) € X",
e Packing and covering numbers and others: consider things like
—1
— xt;,(X) := (C}) max{2f>j dx (ziyxj), (x1,...,28) € X*},
— covi(X) := min{e > 0s.t. exists e-net S for X, with |S| = k}

— cap,(X) := max{e > 0s.t. exists S with |S| = k and sep (S) > ¢}

Question 1.1. What happens to these invariants if I “perturb” X slightly?
How can one define a notion of perturbation of metric spaces?
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some more invariants

e CapNbr(X,e) := max {|S]; S © X with B.jo(z;) N Beja(z;) = &, i # j}
e CovNbr(X,e) := min {|S]; S < X with X < B.(9)}

Excercise 5. Prove that CapNbr(X,e) > CovNbr(X,¢). for all € > 0.
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e-lsometries

We seek a relaxation of the notion of isometries. We need to preserve distances
alright, but we also need to make sure we fill in the target space with the image
of the source via the “approximate isometry map”. This suggests:

Definition 1.8. One says that a map f : X — Y is a e-isometry between
metric spaces X and Y if

° dis(f) < € and
e f(X)is an e-net for Y.

Note that we do not require f to be continuous.

Excercise 6. Prove that a 0-isometry coincides with an isometry in the
usual sense.
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Length structures

Consider a metric space (X, dx). We'll construct a new metric d% over X. For
each continuous path v : [0,1] — X we consider its length

Liy(v) = SUP{Z dx (y(ti),v(tiv1))}

1=1

where the supremum is taken over all partitions of [0,1]. A set of points P =
{t1,ta,...,tn} is a partition of [0,1] if 0 = ¢; <t < --- <ty = 1. We say
that a curve 7y is rectifiable whenver its length is finite.

The intrinsic metric d% on X is defined as follows: for each pair z,z" € X we
consider I'x (z, z’) the set of all continuos paths joining = to «’. Then, we define
dx (z,2') := inf{Lqy (7); v € Tx (2,2")}.

Notice that if the points z and z’ cannot be connected by a continous curve,
then the definition above does not make sense. So when that is the case, one
would (informally) say that d% (x,2’) = co. Notice that this can be the case

even if dx (z,z’') is finite.
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Geodesic metric spaces

Consider a metric space (X, dx). We'll construct a new metric d% over X. For
each continuous path v : [0,1] — X we consider its length

Ly, (7)== bup{Z dx (v(t:),v(tiv1))}

where the supremum is taken over all partitions of [0,1]. A set of points P =
{t1,ta,...,tn} is a partition of [0,1] if 0 = ¢; <ty < --- <ty = 1. We say
that a curve « is rectifiable whenver its length is finite.

The intrinsic metric d% on X is defined as follows: for each pair z,2" € X we
consider I'x (z, z’) the set of all continuos paths joining = to «’. Then, we define
dx (z,2') == inf{Lay (v); v € Tx (2,2")}.

Notice that if the points = and z’ cannot be connected by a continous curve,
then the definition above does not make sense. So when that is the case, one
would (informally) say that d% (z,2’) = oo. Notice that this can be the case

even if dx (z,z’) is finite.

If d% = dx, then one says that dx is intrinsic and that (X, dx) is a path metric
space or also sometimes length space. One says that (X, dx) is geodesic if for
any pair of points x, «’ there exists v € I'x (z, z') such that L, (v) = dx(z,2’).
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A zoo of metric spaces

e We saw examples of different metrics on spheres.
e We saw ultrametric spaces.
e More general are trees.

e Trees are a special class of graphs, which can also be regarded as metric
spaces.

e Graphs are frequently endowed with the path length metric.
e Path length metric spaces are a subclass of metric spaces.

e Riemannian manifolds are a subclass of Length spaces. The metric on
Riemannian manifolds is usually referred to as the geodesic metric.
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